YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modal Analysis of Linear Asymmetric Nonconservative Systems

    Source: Journal of Engineering Mechanics:;1999:;Volume ( 125 ):;issue: 012
    Author:
    Sondipon Adhikari
    DOI: 10.1061/(ASCE)0733-9399(1999)125:12(1372)
    Publisher: American Society of Civil Engineers
    Abstract: In this work, classical modal analysis has been extended to treat lumped parameter asymmetric linear dynamic systems. In the presence of general nonconservative forces, the damping matrix is not simultaneously diagonalizable with the mass and stiffness matrices. The proposed method utilizes left and right eigenvectors of the second-order system and does not require conversion of the equations of motion into the first-order form. Left and right eigenvectors of the nonconservative system are derived in terms of the left and right eigenvectors of the corresponding conservative system using a Galerkin error minimization approach in conjunction with a Neumann expansion method. Transfer functions for the asymmetric nonconservative system are derived in terms of the left and right eigenvectors of the nonconservative system. Suitable numerical examples are given to illustrate the proposed method.
    • Download: (114.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modal Analysis of Linear Asymmetric Nonconservative Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/84920
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorSondipon Adhikari
    date accessioned2017-05-08T22:38:49Z
    date available2017-05-08T22:38:49Z
    date copyrightDecember 1999
    date issued1999
    identifier other%28asce%290733-9399%281999%29125%3A12%281372%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/84920
    description abstractIn this work, classical modal analysis has been extended to treat lumped parameter asymmetric linear dynamic systems. In the presence of general nonconservative forces, the damping matrix is not simultaneously diagonalizable with the mass and stiffness matrices. The proposed method utilizes left and right eigenvectors of the second-order system and does not require conversion of the equations of motion into the first-order form. Left and right eigenvectors of the nonconservative system are derived in terms of the left and right eigenvectors of the corresponding conservative system using a Galerkin error minimization approach in conjunction with a Neumann expansion method. Transfer functions for the asymmetric nonconservative system are derived in terms of the left and right eigenvectors of the nonconservative system. Suitable numerical examples are given to illustrate the proposed method.
    publisherAmerican Society of Civil Engineers
    titleModal Analysis of Linear Asymmetric Nonconservative Systems
    typeJournal Paper
    journal volume125
    journal issue12
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(1999)125:12(1372)
    treeJournal of Engineering Mechanics:;1999:;Volume ( 125 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian