YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Generalized Warping Torsion Formulation

    Source: Journal of Engineering Mechanics:;1998:;Volume ( 124 ):;issue: 003
    Author:
    Mauro Schulz
    ,
    Filip C. Filippou
    DOI: 10.1061/(ASCE)0733-9399(1998)124:3(339)
    Publisher: American Society of Civil Engineers
    Abstract: A general formulation for torsional-flexural analysis of beams with arbitrary cross section is presented in a general coordinate system. The theory maintains Vlasov's approach in terms of generalized strains and stresses and yields the same system of differential equations. The common hypothesis of transversely rigid cross section, which overestimates the effective flexural and torsional section stiffness, is replaced by the assumption that stresses in the plane of the cross section are small. The resulting theory reduces to the exact solution of Timoshenko when warping effects are neglected. Shear stresses due to shear forces, warping torsion, and Saint-Venant torsion are determined as the gradient components of a unique potential function. These equations are solved with the finite element method, which also provides the flexural and torsional section stiffness and the shear center. Numerical examples are presented and results are compared with full three-dimensional finite element analyses. The formulation is simple and, in spite of the limitations of the simplifying hypotheses, sufficiently accurate for many engineering applications, bypassing costly three-dimensional finite element analyses.
    • Download: (1.071Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Generalized Warping Torsion Formulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/84766
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorMauro Schulz
    contributor authorFilip C. Filippou
    date accessioned2017-05-08T22:38:37Z
    date available2017-05-08T22:38:37Z
    date copyrightMarch 1998
    date issued1998
    identifier other%28asce%290733-9399%281998%29124%3A3%28339%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/84766
    description abstractA general formulation for torsional-flexural analysis of beams with arbitrary cross section is presented in a general coordinate system. The theory maintains Vlasov's approach in terms of generalized strains and stresses and yields the same system of differential equations. The common hypothesis of transversely rigid cross section, which overestimates the effective flexural and torsional section stiffness, is replaced by the assumption that stresses in the plane of the cross section are small. The resulting theory reduces to the exact solution of Timoshenko when warping effects are neglected. Shear stresses due to shear forces, warping torsion, and Saint-Venant torsion are determined as the gradient components of a unique potential function. These equations are solved with the finite element method, which also provides the flexural and torsional section stiffness and the shear center. Numerical examples are presented and results are compared with full three-dimensional finite element analyses. The formulation is simple and, in spite of the limitations of the simplifying hypotheses, sufficiently accurate for many engineering applications, bypassing costly three-dimensional finite element analyses.
    publisherAmerican Society of Civil Engineers
    titleGeneralized Warping Torsion Formulation
    typeJournal Paper
    journal volume124
    journal issue3
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(1998)124:3(339)
    treeJournal of Engineering Mechanics:;1998:;Volume ( 124 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian