YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Viscoelastic Analysis of Diametral Compression of Asphalt Concrete

    Source: Journal of Engineering Mechanics:;1997:;Volume ( 123 ):;issue: 006
    Author:
    W. Zhang
    ,
    A. Drescher
    ,
    D. E. Newcomb
    DOI: 10.1061/(ASCE)0733-9399(1997)123:6(596)
    Publisher: American Society of Civil Engineers
    Abstract: The diametral compression of short cylinders is generally accepted as the convenient and accurate test method for evaluating the mechanical properties of asphalt concrete mixtures. In particular, the test serves to determine the relation between the stresses and strains, with the assumption that it can be quantified by the elastic (resilient) modulus and Poisson's ratio. These parameters are used for both the asphalt concrete quality assessment and in elastic multilayer analytic or numerical predictions of pavement deflections. The elasticity-based test analysis used in practice accounts for viscous effects that asphalt concrete displays at moderate and elevated temperatures in a simplified fashion. The methodology presented in this paper incorporates the effect of viscosity in a rigorous manner, by deriving a linear viscoelasticity-based solution. The solution makes use of the elastic-viscoelastic correspondence principle and Laplace and Fourier transforms; it is valid for any load history. Specifically, expressions are derived, which relate the deformation of the cylinder and asphalt concrete viscoelastic properties, e.g., creep compliance, complex modulus, phase angle, and so on. Such properties are required for use with analytical or numerical viscoelastic models used for calculating stresses, strains, and displacements in a pavement system (e.g., in modeling rutting). The solution is illustrated with results of tests at room temperature carried out on one asphalt concrete mixture subjected to constant and pulse/rest load histories. A reasonable level of qualitative and quantitative agreement between the predictions and experiments was obtained.
    • Download: (964.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Viscoelastic Analysis of Diametral Compression of Asphalt Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/84617
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorW. Zhang
    contributor authorA. Drescher
    contributor authorD. E. Newcomb
    date accessioned2017-05-08T22:38:20Z
    date available2017-05-08T22:38:20Z
    date copyrightJune 1997
    date issued1997
    identifier other%28asce%290733-9399%281997%29123%3A6%28596%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/84617
    description abstractThe diametral compression of short cylinders is generally accepted as the convenient and accurate test method for evaluating the mechanical properties of asphalt concrete mixtures. In particular, the test serves to determine the relation between the stresses and strains, with the assumption that it can be quantified by the elastic (resilient) modulus and Poisson's ratio. These parameters are used for both the asphalt concrete quality assessment and in elastic multilayer analytic or numerical predictions of pavement deflections. The elasticity-based test analysis used in practice accounts for viscous effects that asphalt concrete displays at moderate and elevated temperatures in a simplified fashion. The methodology presented in this paper incorporates the effect of viscosity in a rigorous manner, by deriving a linear viscoelasticity-based solution. The solution makes use of the elastic-viscoelastic correspondence principle and Laplace and Fourier transforms; it is valid for any load history. Specifically, expressions are derived, which relate the deformation of the cylinder and asphalt concrete viscoelastic properties, e.g., creep compliance, complex modulus, phase angle, and so on. Such properties are required for use with analytical or numerical viscoelastic models used for calculating stresses, strains, and displacements in a pavement system (e.g., in modeling rutting). The solution is illustrated with results of tests at room temperature carried out on one asphalt concrete mixture subjected to constant and pulse/rest load histories. A reasonable level of qualitative and quantitative agreement between the predictions and experiments was obtained.
    publisherAmerican Society of Civil Engineers
    titleViscoelastic Analysis of Diametral Compression of Asphalt Concrete
    typeJournal Paper
    journal volume123
    journal issue6
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(1997)123:6(596)
    treeJournal of Engineering Mechanics:;1997:;Volume ( 123 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian