contributor author | Chih‐Ping Wu | |
contributor author | Chi‐Chuan Liu | |
date accessioned | 2017-05-08T22:37:17Z | |
date available | 2017-05-08T22:37:17Z | |
date copyright | July 1994 | |
date issued | 1994 | |
identifier other | %28asce%290733-9399%281994%29120%3A7%281403%29.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/84085 | |
description abstract | A discrete‐layer, high‐order theory for the stress and displacement analyses of thick, doubly curved laminated shells is presented. The displacements of the shell in the theory are assumed to be layer‐by‐layer high‐order polynomial functions through the shell thickness. The displacement continuity conditions at the interface between layers are imposed as constraints and are introduced into the potential energy functional by Lagrange multipliers. A set of governing equations and the admissible boundary conditions are given on the basis of the theory by applying the generalized variational principle. The analytical solutions of crossply doubly curved shells with shear diaphragm supports are obtained by using the Fourier series expansion method. They are then compared with the 3D elasticity solutions and the analytical solutions obtained from other laminated shell theories. The present theory indicates very close agreement with 3D elasticity solutions. | |
publisher | American Society of Civil Engineers | |
title | Stress and Displacement of Thick Doubly Curved Laminated Shells | |
type | Journal Paper | |
journal volume | 120 | |
journal issue | 7 | |
journal title | Journal of Engineering Mechanics | |
identifier doi | 10.1061/(ASCE)0733-9399(1994)120:7(1403) | |
tree | Journal of Engineering Mechanics:;1994:;Volume ( 120 ):;issue: 007 | |
contenttype | Fulltext | |