YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow through Porous Bed of Turbulent Stream

    Source: Journal of Engineering Mechanics:;1993:;Volume ( 119 ):;issue: 002
    Author:
    Donghuo Zhou
    ,
    Cesar Mendoza
    DOI: 10.1061/(ASCE)0733-9399(1993)119:2(365)
    Publisher: American Society of Civil Engineers
    Abstract: An analysis of the flow through an inclined‐plane pervious substratum coupled to a turbulent, steady, uniform, and fully developed open channel flow above it is introduced. The porous material is taken to be homogeneous, isotropic, and formed by a square‐arrayed lattice made of circular cylinders with axes normal to the flow direction. Starting from the Navier‐Stokes equation for the flow through the pores, a combination of the ensemble average method and the method of multiple scales is used to derive the equations governing the macroscale flow through the bed. From them, the vertical variation of the velocity in the substratum, as well as the boundary at the pervious interface are obtained. Application of the derived boundary condition, which guarantees continuity of the total stress across the interface, to the frontier between a laminar flow and a porous material, recovers the condition proposed by Beavers and Joseph in 1967. Joint use of the obtained equation for the velocity distribution and available data, suggests that the parameter controlling its exponential decay, from the slip‐velocity at the interface to the Darcy velocity away from it, may be a function of the properties of the porous material. The analysis also indicated that the nonlinearity of the flow through the substratum originates from the curvature of the streamlines and the flow separation around the solid particles at the microscale level.
    • Download: (886.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow through Porous Bed of Turbulent Stream

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/83854
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorDonghuo Zhou
    contributor authorCesar Mendoza
    date accessioned2017-05-08T22:36:54Z
    date available2017-05-08T22:36:54Z
    date copyrightFebruary 1993
    date issued1993
    identifier other%28asce%290733-9399%281993%29119%3A2%28365%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/83854
    description abstractAn analysis of the flow through an inclined‐plane pervious substratum coupled to a turbulent, steady, uniform, and fully developed open channel flow above it is introduced. The porous material is taken to be homogeneous, isotropic, and formed by a square‐arrayed lattice made of circular cylinders with axes normal to the flow direction. Starting from the Navier‐Stokes equation for the flow through the pores, a combination of the ensemble average method and the method of multiple scales is used to derive the equations governing the macroscale flow through the bed. From them, the vertical variation of the velocity in the substratum, as well as the boundary at the pervious interface are obtained. Application of the derived boundary condition, which guarantees continuity of the total stress across the interface, to the frontier between a laminar flow and a porous material, recovers the condition proposed by Beavers and Joseph in 1967. Joint use of the obtained equation for the velocity distribution and available data, suggests that the parameter controlling its exponential decay, from the slip‐velocity at the interface to the Darcy velocity away from it, may be a function of the properties of the porous material. The analysis also indicated that the nonlinearity of the flow through the substratum originates from the curvature of the streamlines and the flow separation around the solid particles at the microscale level.
    publisherAmerican Society of Civil Engineers
    titleFlow through Porous Bed of Turbulent Stream
    typeJournal Paper
    journal volume119
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(1993)119:2(365)
    treeJournal of Engineering Mechanics:;1993:;Volume ( 119 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian