YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Performance of Rubberized Stone Matrix Asphalt by a Simplified Viscoelastic Continuum Damage Model

    Source: Journal of Materials in Civil Engineering:;2016:;Volume ( 028 ):;issue: 004
    Author:
    Zhaoxing Xie
    ,
    Junan Shen
    DOI: 10.1061/(ASCE)MT.1943-5533.0001463
    Publisher: American Society of Civil Engineers
    Abstract: The study investigated the fatigue performance of rubberized stone matrix asphalt (SMA) in the dry process and compared its fatigue characterization with SMAs with other typical binders. Five SMA mixtures were used with the following asphalt binders: (1) virgin asphalt of PG 67-22, (2) crumb rubber modifier (CRM) modified in wet process, (3) CRM modified in dry process, (4) terminal-blend binder, and (5) styrene-butadiene-styrene (SBS) modified binder. Dynamic modulus and direct-tension fatigue tests were performed using the asphalt mixture performance tester (AMPT) system. In addition, improved linear amplitude sweep (LAS) tests were performed on the binders by a dynamic shear rheometer (DSR). The fatigue test data were analyzed by the simplified viscoelastic continuum damage (S-VECD) theory. The results showed that (1) dynamic modulus of the rubberized SMA in the dry process was similar to that of the wet process and higher than that of SMA with virgin asphalt, although a little lower than those of SMAs with terminal-blend binder or SBS binder at high temperatures; (2) the damage resistance and fatigue life of the rubberized SMA in the dry process are higher than those of SMA with virgin asphalt and similar or slightly higher than with the wet process, but lower than SMAs with terminal-blend binder or SBS binder; and (3) the virgin binder had lower damage resistance and fatigue life, followed by the CRM binder in the wet process, the terminal-blend binder and SBS binder had higher damage resistance and fatigue life. This is consistent with the mixture results for the direct-tension fatigue tests.
    • Download: (2.441Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Performance of Rubberized Stone Matrix Asphalt by a Simplified Viscoelastic Continuum Damage Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/83247
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZhaoxing Xie
    contributor authorJunan Shen
    date accessioned2017-05-08T22:35:43Z
    date available2017-05-08T22:35:43Z
    date copyrightApril 2016
    date issued2016
    identifier other51089372.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/83247
    description abstractThe study investigated the fatigue performance of rubberized stone matrix asphalt (SMA) in the dry process and compared its fatigue characterization with SMAs with other typical binders. Five SMA mixtures were used with the following asphalt binders: (1) virgin asphalt of PG 67-22, (2) crumb rubber modifier (CRM) modified in wet process, (3) CRM modified in dry process, (4) terminal-blend binder, and (5) styrene-butadiene-styrene (SBS) modified binder. Dynamic modulus and direct-tension fatigue tests were performed using the asphalt mixture performance tester (AMPT) system. In addition, improved linear amplitude sweep (LAS) tests were performed on the binders by a dynamic shear rheometer (DSR). The fatigue test data were analyzed by the simplified viscoelastic continuum damage (S-VECD) theory. The results showed that (1) dynamic modulus of the rubberized SMA in the dry process was similar to that of the wet process and higher than that of SMA with virgin asphalt, although a little lower than those of SMAs with terminal-blend binder or SBS binder at high temperatures; (2) the damage resistance and fatigue life of the rubberized SMA in the dry process are higher than those of SMA with virgin asphalt and similar or slightly higher than with the wet process, but lower than SMAs with terminal-blend binder or SBS binder; and (3) the virgin binder had lower damage resistance and fatigue life, followed by the CRM binder in the wet process, the terminal-blend binder and SBS binder had higher damage resistance and fatigue life. This is consistent with the mixture results for the direct-tension fatigue tests.
    publisherAmerican Society of Civil Engineers
    titleFatigue Performance of Rubberized Stone Matrix Asphalt by a Simplified Viscoelastic Continuum Damage Model
    typeJournal Paper
    journal volume28
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0001463
    treeJournal of Materials in Civil Engineering:;2016:;Volume ( 028 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian