YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    NSM CFRP Prestressing Techniques with Strengthening Potential for Simultaneously Enhancing Load Capacity and Ductility Performance

    Source: Journal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 005
    Author:
    Mohammadali Rezazadeh
    ,
    Honeyeh Ramezansefat
    ,
    Joaquim Barros
    DOI: 10.1061/(ASCE)CC.1943-5614.0000679
    Publisher: American Society of Civil Engineers
    Abstract: The ductility performance of reinforced concrete (RC) members strengthened with carbon-fiber-reinforced polymer (CFRP) reinforcement using near-surface-mounted (NSM) technique has a tendency to decrease with the increase of the prestress level applied to the CFRPs. Hence, in this study, first to assure a sufficient degree of ductility for these prestressed members, a methodology was proposed to determine the maximum prestress level that can be applied to the NSM CFRP reinforcement. Using this methodology, a simplified analytical formulation was developed to determine this maximum allowable prestress level. In the second part, after demonstrating the good predictive performance of a developed three-dimensional finite-element model, first the effect of partial unbonding of prestressed NSM CFRP reinforcement at midspan to increase the ductility performance of strengthened slabs was numerically assessed. Then, a new hybrid-partially bonded system, combining the fully bonded non-prestressed and partially bonded prestressed CFRP reinforcements in the same application according to the NSM technique, was proposed for the flexural strengthening of RC slabs. This hybrid-partially bonded system was capable of providing a better balance in terms of load-carrying and ultimate deflection capacity of prestressed strengthened slabs. At the end, a comparison between the potentialities of fully bonded, partially bonded, and hybrid-partially bonded systems for the flexural strengthening of RC structures is made, and the relevant results are presented and discussed.
    • Download: (7.089Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      NSM CFRP Prestressing Techniques with Strengthening Potential for Simultaneously Enhancing Load Capacity and Ductility Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/83240
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorMohammadali Rezazadeh
    contributor authorHoneyeh Ramezansefat
    contributor authorJoaquim Barros
    date accessioned2017-05-08T22:35:42Z
    date available2017-05-08T22:35:42Z
    date copyrightOctober 2016
    date issued2016
    identifier other51063348.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/83240
    description abstractThe ductility performance of reinforced concrete (RC) members strengthened with carbon-fiber-reinforced polymer (CFRP) reinforcement using near-surface-mounted (NSM) technique has a tendency to decrease with the increase of the prestress level applied to the CFRPs. Hence, in this study, first to assure a sufficient degree of ductility for these prestressed members, a methodology was proposed to determine the maximum prestress level that can be applied to the NSM CFRP reinforcement. Using this methodology, a simplified analytical formulation was developed to determine this maximum allowable prestress level. In the second part, after demonstrating the good predictive performance of a developed three-dimensional finite-element model, first the effect of partial unbonding of prestressed NSM CFRP reinforcement at midspan to increase the ductility performance of strengthened slabs was numerically assessed. Then, a new hybrid-partially bonded system, combining the fully bonded non-prestressed and partially bonded prestressed CFRP reinforcements in the same application according to the NSM technique, was proposed for the flexural strengthening of RC slabs. This hybrid-partially bonded system was capable of providing a better balance in terms of load-carrying and ultimate deflection capacity of prestressed strengthened slabs. At the end, a comparison between the potentialities of fully bonded, partially bonded, and hybrid-partially bonded systems for the flexural strengthening of RC structures is made, and the relevant results are presented and discussed.
    publisherAmerican Society of Civil Engineers
    titleNSM CFRP Prestressing Techniques with Strengthening Potential for Simultaneously Enhancing Load Capacity and Ductility Performance
    typeJournal Paper
    journal volume20
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000679
    treeJournal of Composites for Construction:;2016:;Volume ( 020 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian