YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of Speed Correction Factors Based on Speed-Specific Distributions of Vehicle Specific Power for Urban Restricted-Access Roadways

    Source: Journal of Transportation Engineering, Part A: Systems:;2016:;Volume ( 142 ):;issue: 003
    Author:
    Guohua Song
    ,
    Lei Yu
    ,
    Yizheng Wu
    DOI: 10.1061/(ASCE)TE.1943-5436.0000819
    Publisher: American Society of Civil Engineers
    Abstract: Precise facility-specific speed correction factors (SCFs) are important parameters for direct and quick evaluation of the effect of traffic flow variations on vehicle emissions. However, the traditional method in developing SCFs is time consuming and costly, which impedes the development of SCFs and their applications. Based on massive instantaneous vehicle activity data, this paper proposes a novel method for deriving SCFs for light-duty vehicles on restricted access roadways in Beijing. First, a large sample of 60-s speed-specific trajectories is divided from the vehicle activity data, and grouped into speed-specific trajectory pools. Then, a database and two models of speed-specific and vehicle-specific power (VSP) distributions are established for different speed ranges. Further, by combining emission rates and VSP distributions, the SCFs for nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO) pollutants are derived for different emission standards. The derived SCFs from different sources of VSP distributions are compared with each other and validated by using another independent data source. The analysis result shows that, by using the VSP distribution database, the proposed method is applicable and effective in generating reliable SCFs in high resolution. The VSP distribution models can predict well SCFs within each speed range, while discontinuous predictions occur at their range boundary. Finally, several recommendations are made for future studies on developing comprehensive SCFs, which may help in practice to monitor dynamic traffic emissions when the real-time speed data are available.
    • Download: (1.000Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of Speed Correction Factors Based on Speed-Specific Distributions of Vehicle Specific Power for Urban Restricted-Access Roadways

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/83227
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorGuohua Song
    contributor authorLei Yu
    contributor authorYizheng Wu
    date accessioned2017-05-08T22:35:40Z
    date available2017-05-08T22:35:40Z
    date copyrightMarch 2016
    date issued2016
    identifier other50974870.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/83227
    description abstractPrecise facility-specific speed correction factors (SCFs) are important parameters for direct and quick evaluation of the effect of traffic flow variations on vehicle emissions. However, the traditional method in developing SCFs is time consuming and costly, which impedes the development of SCFs and their applications. Based on massive instantaneous vehicle activity data, this paper proposes a novel method for deriving SCFs for light-duty vehicles on restricted access roadways in Beijing. First, a large sample of 60-s speed-specific trajectories is divided from the vehicle activity data, and grouped into speed-specific trajectory pools. Then, a database and two models of speed-specific and vehicle-specific power (VSP) distributions are established for different speed ranges. Further, by combining emission rates and VSP distributions, the SCFs for nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO) pollutants are derived for different emission standards. The derived SCFs from different sources of VSP distributions are compared with each other and validated by using another independent data source. The analysis result shows that, by using the VSP distribution database, the proposed method is applicable and effective in generating reliable SCFs in high resolution. The VSP distribution models can predict well SCFs within each speed range, while discontinuous predictions occur at their range boundary. Finally, several recommendations are made for future studies on developing comprehensive SCFs, which may help in practice to monitor dynamic traffic emissions when the real-time speed data are available.
    publisherAmerican Society of Civil Engineers
    titleDevelopment of Speed Correction Factors Based on Speed-Specific Distributions of Vehicle Specific Power for Urban Restricted-Access Roadways
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000819
    treeJournal of Transportation Engineering, Part A: Systems:;2016:;Volume ( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian