YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stationary Response of Beams and Frames with Fractional Dampers through Exact Frequency Response Functions

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 005
    Author:
    Giuseppe Failla
    DOI: 10.1061/(ASCE)EM.1943-7889.0001076
    Publisher: American Society of Civil Engineers
    Abstract: This paper proposes an original approach to the stochastic analysis of beams and plane frames with arbitrary number of fractional dampers, subjected to stationary excitations. External and internal, translational and rotational dampers are considered, with constitutive behavior modeled by the Riemann-Liouville fractional derivative. Starting from the Euler-Bernoulli formulation for bending vibration of a beam, and treating discontinuous response variables at the application points of dampers by the theory of generalized functions, it is shown that an appropriate use of dynamic Green’s functions of the bare beam provides the exact frequency response to point or distributed polynomial load, in terms of four integration constants only, regardless of the number of dampers. Based on this result, exact closed-form expressions are built for the stationary response of a single beam and a plane frame, under stationary point/polynomial loads, for any number of dampers. The stationary response in every frame member is derived from a nodal displacement solution computed by an exact global frequency response matrix and a load vector, whose size depends only on the number of beam-to-column nodes, for any number of point/polynomial loads and dampers along the frame members. Solutions are built for the most general case of multiple dampers occurring simultaneously at the same point. Changes to consider single dampers at a given location are straightforward. Numerical applications show the advantages of the proposed method.
    • Download: (3.682Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stationary Response of Beams and Frames with Fractional Dampers through Exact Frequency Response Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/83178
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorGiuseppe Failla
    date accessioned2017-05-08T22:35:22Z
    date available2017-05-08T22:35:22Z
    date copyrightMay 2017
    date issued2017
    identifier other50823184.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/83178
    description abstractThis paper proposes an original approach to the stochastic analysis of beams and plane frames with arbitrary number of fractional dampers, subjected to stationary excitations. External and internal, translational and rotational dampers are considered, with constitutive behavior modeled by the Riemann-Liouville fractional derivative. Starting from the Euler-Bernoulli formulation for bending vibration of a beam, and treating discontinuous response variables at the application points of dampers by the theory of generalized functions, it is shown that an appropriate use of dynamic Green’s functions of the bare beam provides the exact frequency response to point or distributed polynomial load, in terms of four integration constants only, regardless of the number of dampers. Based on this result, exact closed-form expressions are built for the stationary response of a single beam and a plane frame, under stationary point/polynomial loads, for any number of dampers. The stationary response in every frame member is derived from a nodal displacement solution computed by an exact global frequency response matrix and a load vector, whose size depends only on the number of beam-to-column nodes, for any number of point/polynomial loads and dampers along the frame members. Solutions are built for the most general case of multiple dampers occurring simultaneously at the same point. Changes to consider single dampers at a given location are straightforward. Numerical applications show the advantages of the proposed method.
    publisherAmerican Society of Civil Engineers
    titleStationary Response of Beams and Frames with Fractional Dampers through Exact Frequency Response Functions
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001076
    treeJournal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian