YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Performance of Alkali-Activated Soil Ash versus Soil Cement

    Source: Journal of Materials in Civil Engineering:;2016:;Volume ( 028 ):;issue: 002
    Author:
    Sara Rios
    ,
    Nuno Cristelo
    ,
    António Viana da Fonseca
    ,
    Cristiana Ferreira
    DOI: 10.1061/(ASCE)MT.1943-5533.0001398
    Publisher: American Society of Civil Engineers
    Abstract: Alkaline activation of fly ash (FA) was used to improve the mechanical performance of a silty sand, considering this new material as a replacement for soil-cement applications, namely, bases and subbases, for transportation infrastructures. For that purpose, specimens were molded from mixtures of soil, FA, and an alkaline activator made from sodium hydroxide and sodium silicate. Uniaxial compression tests showed that strength is highly increased by the addition of this new binder. The results described a high stiffness material, with an initial volume reduction followed by significant dilation. All specimens have clearly reached the respective yield surface during shearing, and peak-strength Mohr–Coulomb parameters were defined for each mixture. The evolution of the microstructure during curing, responsible for the mechanical behavior detected in the previous tests, was observed by scanning electron microscopy. These results were compared with soil-cement data obtained previously with the same soil at similar compaction conditions. The main difference between both binders was the curing rate, with alkali-activated specimens showing a more progressive and long-lasting strength increase. This was analyzed taking into account the chemical process responsible for the behavior of the mixtures.
    • Download: (14.42Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Performance of Alkali-Activated Soil Ash versus Soil Cement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/82976
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorSara Rios
    contributor authorNuno Cristelo
    contributor authorAntónio Viana da Fonseca
    contributor authorCristiana Ferreira
    date accessioned2017-05-08T22:34:42Z
    date available2017-05-08T22:34:42Z
    date copyrightFebruary 2016
    date issued2016
    identifier other50154442.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/82976
    description abstractAlkaline activation of fly ash (FA) was used to improve the mechanical performance of a silty sand, considering this new material as a replacement for soil-cement applications, namely, bases and subbases, for transportation infrastructures. For that purpose, specimens were molded from mixtures of soil, FA, and an alkaline activator made from sodium hydroxide and sodium silicate. Uniaxial compression tests showed that strength is highly increased by the addition of this new binder. The results described a high stiffness material, with an initial volume reduction followed by significant dilation. All specimens have clearly reached the respective yield surface during shearing, and peak-strength Mohr–Coulomb parameters were defined for each mixture. The evolution of the microstructure during curing, responsible for the mechanical behavior detected in the previous tests, was observed by scanning electron microscopy. These results were compared with soil-cement data obtained previously with the same soil at similar compaction conditions. The main difference between both binders was the curing rate, with alkali-activated specimens showing a more progressive and long-lasting strength increase. This was analyzed taking into account the chemical process responsible for the behavior of the mixtures.
    publisherAmerican Society of Civil Engineers
    titleStructural Performance of Alkali-Activated Soil Ash versus Soil Cement
    typeJournal Paper
    journal volume28
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0001398
    treeJournal of Materials in Civil Engineering:;2016:;Volume ( 028 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian