YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Roundabout System Capacity Estimation and Control Strategy with Origin-Destination Pattern

    Source: Journal of Transportation Engineering, Part A: Systems:;2016:;Volume ( 142 ):;issue: 005
    Author:
    Hooi Ling Khoo
    ,
    Chun You Tang
    DOI: 10.1061/(ASCE)TE.1943-5436.0000838
    Publisher: American Society of Civil Engineers
    Abstract: This study investigates the roundabout as a system in which the interaction of inflow, outflow, and circular flow are analyzed. Developed based on the concept of Macroscopic Fundamental Diagram (MFD), the macroscopic properties of the roundabout system are estimated by fitting traffic data into several traffic-stream models. The capacity and optimal density are derived from regression fitting. A novel control strategy that aims to regulate the approach inflow in order to maintain the average density on the circular segment at an optimal density is then proposed. It decides on the approach that needs to be restricted based on the circular segment density (i.e., congestion level) and the origin-destination demand pattern to prevent gridlock. A case study of a two-lane roundabout in Selangor, Malaysia is developed in a microscopic simulation environment to study the roundabout system properties and to test the effectiveness of the proposed control strategy. Results show that the Greenshield model has the best fit in describing the roundabout system properties. The proposed control strategy is effective in reducing system travel time and increasing throughput, especially during medium to high levels of demand. In addition, the sensitivity analysis reveals that the effectiveness is sensitive to the parameter setting, roundabout geometry, as well as traffic condition and origin-destination pattern.
    • Download: (6.440Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Roundabout System Capacity Estimation and Control Strategy with Origin-Destination Pattern

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/82955
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorHooi Ling Khoo
    contributor authorChun You Tang
    date accessioned2017-05-08T22:34:38Z
    date available2017-05-08T22:34:38Z
    date copyrightMay 2016
    date issued2016
    identifier other50106816.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/82955
    description abstractThis study investigates the roundabout as a system in which the interaction of inflow, outflow, and circular flow are analyzed. Developed based on the concept of Macroscopic Fundamental Diagram (MFD), the macroscopic properties of the roundabout system are estimated by fitting traffic data into several traffic-stream models. The capacity and optimal density are derived from regression fitting. A novel control strategy that aims to regulate the approach inflow in order to maintain the average density on the circular segment at an optimal density is then proposed. It decides on the approach that needs to be restricted based on the circular segment density (i.e., congestion level) and the origin-destination demand pattern to prevent gridlock. A case study of a two-lane roundabout in Selangor, Malaysia is developed in a microscopic simulation environment to study the roundabout system properties and to test the effectiveness of the proposed control strategy. Results show that the Greenshield model has the best fit in describing the roundabout system properties. The proposed control strategy is effective in reducing system travel time and increasing throughput, especially during medium to high levels of demand. In addition, the sensitivity analysis reveals that the effectiveness is sensitive to the parameter setting, roundabout geometry, as well as traffic condition and origin-destination pattern.
    publisherAmerican Society of Civil Engineers
    titleRoundabout System Capacity Estimation and Control Strategy with Origin-Destination Pattern
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000838
    treeJournal of Transportation Engineering, Part A: Systems:;2016:;Volume ( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian