YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantifying the Uncertainty Associated with Estimating Sediment Concentrations in Open Channel Flows Using the Stochastic Particle Tracking Method

    Source: Journal of Hydraulic Engineering:;2015:;Volume ( 141 ):;issue: 012
    Author:
    Jungsun Oh
    ,
    Christina W. Tsai
    ,
    Sung-Uk Choi
    DOI: 10.1061/(ASCE)HY.1943-7900.0001045
    Publisher: American Society of Civil Engineers
    Abstract: Suspended sediment concentrations are typically estimated using either the advection-diffusion equation or sediment rating curves in a deterministic manner. This study attempts to develop a stochastic approach for quantifying the probabilistic characteristics of sediment concentrations that can account for the uncertainty associated with flow randomness. Turbulence is a primary cause of particle diffusion in a flow. Impacts from such flow randomness on particle diffusion can be observed from two aspects: (1) the degree of spreading of a particle cloud, and (2) variability in concentration curves observed in different releases of particles under the same turbulence intensity. While the former diffusion has been extensively studied, the latter has not been fully investigated, in spite of its significance in terms of identifying the uncertainty associated with estimating concentrations. Herein, the effect of probabilistic characteristics attributed to turbulence on sediment concentrations is evaluated through multiple realizations of a Lagrangian-based stochastic differential equation for particle trajectory. Both the resuspension and deposition of particles are considered in the transport processes. Sediment concentrations can then be estimated from the spatial distribution of particles. As a result of the ensemble standard deviation, it is found that estimating higher-concentration regions is subject to a higher uncertainty. The coefficient of variation representing the extent of variability relative to their mean in lower-concentration regions is found to be more variable than that in higher-concentration regions. It is observed that when the ensemble standard deviation of the concentration is normalized by the square root of the particle number, the magnitude of the variability of concentration curves tends to approach asymptotically to one single curve.
    • Download: (1.382Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantifying the Uncertainty Associated with Estimating Sediment Concentrations in Open Channel Flows Using the Stochastic Particle Tracking Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/82948
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorJungsun Oh
    contributor authorChristina W. Tsai
    contributor authorSung-Uk Choi
    date accessioned2017-05-08T22:34:37Z
    date available2017-05-08T22:34:37Z
    date copyrightDecember 2015
    date issued2015
    identifier other50106811.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/82948
    description abstractSuspended sediment concentrations are typically estimated using either the advection-diffusion equation or sediment rating curves in a deterministic manner. This study attempts to develop a stochastic approach for quantifying the probabilistic characteristics of sediment concentrations that can account for the uncertainty associated with flow randomness. Turbulence is a primary cause of particle diffusion in a flow. Impacts from such flow randomness on particle diffusion can be observed from two aspects: (1) the degree of spreading of a particle cloud, and (2) variability in concentration curves observed in different releases of particles under the same turbulence intensity. While the former diffusion has been extensively studied, the latter has not been fully investigated, in spite of its significance in terms of identifying the uncertainty associated with estimating concentrations. Herein, the effect of probabilistic characteristics attributed to turbulence on sediment concentrations is evaluated through multiple realizations of a Lagrangian-based stochastic differential equation for particle trajectory. Both the resuspension and deposition of particles are considered in the transport processes. Sediment concentrations can then be estimated from the spatial distribution of particles. As a result of the ensemble standard deviation, it is found that estimating higher-concentration regions is subject to a higher uncertainty. The coefficient of variation representing the extent of variability relative to their mean in lower-concentration regions is found to be more variable than that in higher-concentration regions. It is observed that when the ensemble standard deviation of the concentration is normalized by the square root of the particle number, the magnitude of the variability of concentration curves tends to approach asymptotically to one single curve.
    publisherAmerican Society of Civil Engineers
    titleQuantifying the Uncertainty Associated with Estimating Sediment Concentrations in Open Channel Flows Using the Stochastic Particle Tracking Method
    typeJournal Paper
    journal volume141
    journal issue12
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001045
    treeJournal of Hydraulic Engineering:;2015:;Volume ( 141 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian