YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Performance and Structural Analysis of Plywood-Coupled LVL Walls

    Source: Journal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 002
    Author:
    A. Iqbal
    ,
    T. Smith
    ,
    S. Pampanin
    ,
    M. Fragiacomo
    ,
    A. Palermo
    ,
    A. H. Buchanan
    DOI: 10.1061/(ASCE)ST.1943-541X.0001383
    Publisher: American Society of Civil Engineers
    Abstract: Prestressed-laminated timber (Pres-Lam) design has recently been adopted for multistory timber buildings based on ongoing research at the University of Canterbury, New Zealand. This system combines large timber members with unbonded posttensioning for recentering and ductile connections for energy dissipation. This paper describes the experimental, analytical, and numerical investigation of posttensioned laminated veneer lumber (LVL) walls coupled with plywood sheets subjected to both quasi-static cyclic and pseudodynamic seismic testing protocols. Different arrangements of nails, used to connect the plywood coupling panels with the posttensioned timber walls, have been tested to compare their energy dissipation characteristics. Simplified numerical macromodels with rotational spring elements have been developed to accurately represent the recentering contribution from the posttensioning and the pinched hysteric contribution of the nailed connections. The testing results provided good seismic performance, characterized by negligible damage of the structural members and very small residual deformations following drift levels of 2–2.5%. The only components significantly damaged, as designed, were the nailed connections between the plywood sheets and the LVL walls. These plywood sheets can be easily and cheaply removed and replaced with new sheets after an earthquake, creating a major reduction in postearthquake downtime. Combining these benefits together, the concept has potential for consideration as a cost-effective, high-performance solution for multistory timber buildings.
    • Download: (9.174Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Performance and Structural Analysis of Plywood-Coupled LVL Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/82826
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorA. Iqbal
    contributor authorT. Smith
    contributor authorS. Pampanin
    contributor authorM. Fragiacomo
    contributor authorA. Palermo
    contributor authorA. H. Buchanan
    date accessioned2017-05-08T22:34:15Z
    date available2017-05-08T22:34:15Z
    date copyrightFebruary 2016
    date issued2016
    identifier other49926938.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/82826
    description abstractPrestressed-laminated timber (Pres-Lam) design has recently been adopted for multistory timber buildings based on ongoing research at the University of Canterbury, New Zealand. This system combines large timber members with unbonded posttensioning for recentering and ductile connections for energy dissipation. This paper describes the experimental, analytical, and numerical investigation of posttensioned laminated veneer lumber (LVL) walls coupled with plywood sheets subjected to both quasi-static cyclic and pseudodynamic seismic testing protocols. Different arrangements of nails, used to connect the plywood coupling panels with the posttensioned timber walls, have been tested to compare their energy dissipation characteristics. Simplified numerical macromodels with rotational spring elements have been developed to accurately represent the recentering contribution from the posttensioning and the pinched hysteric contribution of the nailed connections. The testing results provided good seismic performance, characterized by negligible damage of the structural members and very small residual deformations following drift levels of 2–2.5%. The only components significantly damaged, as designed, were the nailed connections between the plywood sheets and the LVL walls. These plywood sheets can be easily and cheaply removed and replaced with new sheets after an earthquake, creating a major reduction in postearthquake downtime. Combining these benefits together, the concept has potential for consideration as a cost-effective, high-performance solution for multistory timber buildings.
    publisherAmerican Society of Civil Engineers
    titleExperimental Performance and Structural Analysis of Plywood-Coupled LVL Walls
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001383
    treeJournal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian