YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ontology-Based Multilabel Text Classification of Construction Regulatory Documents

    Source: Journal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 004
    Author:
    Peng Zhou
    ,
    Nora El-Gohary
    DOI: 10.1061/(ASCE)CP.1943-5487.0000530
    Publisher: American Society of Civil Engineers
    Abstract: In order to fully automate the environmental regulatory compliance checking process, rules should be automatically extracted from applicable environmental regulatory textual documents, such as energy conservation codes. In the authors’ automated compliance checking (ACC) approach, prior to rule extraction, the text is first classified into predefined categories to only retrieve relevant clauses and filter out irrelevant ones, thereby improving the efficiency and accuracy of rule extraction. Machine learning (ML) techniques have been commonly used for text classification (TC). Nonontology-based, ML-based TC has, generally, performed well. However, given the need for an exceptionally high performance in TC to support high performance in ACC, further TC performance improvement is needed. To address this need, an ontology-based TC algorithm is proposed to further improve the classification performance by utilizing the semantic features of the text. A domain ontology for conceptualizing the environmental knowledge was used. The proposed ontology-based TC algorithm was tested on 25 environmental regulatory documents, evaluated using four evaluation metrics, and compared with the authors’ previously utilized ML-based approach. Based on the testing data, the results show that the ontology-based approach consistently outperformed the ML-based approach, under all evaluation metrics.
    • Download: (539.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ontology-Based Multilabel Text Classification of Construction Regulatory Documents

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/82607
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorPeng Zhou
    contributor authorNora El-Gohary
    date accessioned2017-05-08T22:33:37Z
    date available2017-05-08T22:33:37Z
    date copyrightJuly 2016
    date issued2016
    identifier other49693181.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/82607
    description abstractIn order to fully automate the environmental regulatory compliance checking process, rules should be automatically extracted from applicable environmental regulatory textual documents, such as energy conservation codes. In the authors’ automated compliance checking (ACC) approach, prior to rule extraction, the text is first classified into predefined categories to only retrieve relevant clauses and filter out irrelevant ones, thereby improving the efficiency and accuracy of rule extraction. Machine learning (ML) techniques have been commonly used for text classification (TC). Nonontology-based, ML-based TC has, generally, performed well. However, given the need for an exceptionally high performance in TC to support high performance in ACC, further TC performance improvement is needed. To address this need, an ontology-based TC algorithm is proposed to further improve the classification performance by utilizing the semantic features of the text. A domain ontology for conceptualizing the environmental knowledge was used. The proposed ontology-based TC algorithm was tested on 25 environmental regulatory documents, evaluated using four evaluation metrics, and compared with the authors’ previously utilized ML-based approach. Based on the testing data, the results show that the ontology-based approach consistently outperformed the ML-based approach, under all evaluation metrics.
    publisherAmerican Society of Civil Engineers
    titleOntology-Based Multilabel Text Classification of Construction Regulatory Documents
    typeJournal Paper
    journal volume30
    journal issue4
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000530
    treeJournal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian