YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model Suitable for Impact Problems

    Source: Journal of Aerospace Engineering:;2016:;Volume ( 029 ):;issue: 004
    Author:
    Robert K. Goldberg
    ,
    Kelly S. Carney
    ,
    Paul DuBois
    ,
    Canio Hoffarth
    ,
    Joseph Harrington
    ,
    Subramaniam Rajan
    ,
    Gunther Blankenhorn
    DOI: 10.1061/(ASCE)AS.1943-5525.0000580
    Publisher: American Society of Civil Engineers
    Abstract: The need for accurate material models to simulate the deformation, damage, and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. There are a variety of material models currently available within commercial transient dynamic finite-element codes to analyze the response of composite materials under impact conditions. However, there are several features that are lacking in the currently available models that could improve the predictive capability of the impact simulations. To address these needs, a combined elasto-plastic model with damage suitable for implementation within transient dynamic finite-element codes has been developed. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. Currently, the model development efforts have focused on creating the plasticity portion of the model. A commonly used composite failure model has been generalized and extended to a strain-hardening-based orthotropic yield function with a non-associative flow rule. The coefficients of the yield function are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients of the flow rule are determined in a systematic manner based on the available stress-strain data for the material. The evolution of the yield surface is examined, in detail, for a sample composite. A numerical algorithm based on the classic radial return method is employed to compute the evolution of the effective plastic strain. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed model. The developed material model is suitable for use within commercial transient dynamic finite-element codes for use in analyzing the nonlinear response of polymer composites.
    • Download: (1.037Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model Suitable for Impact Problems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/82347
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorRobert K. Goldberg
    contributor authorKelly S. Carney
    contributor authorPaul DuBois
    contributor authorCanio Hoffarth
    contributor authorJoseph Harrington
    contributor authorSubramaniam Rajan
    contributor authorGunther Blankenhorn
    date accessioned2017-05-08T22:32:39Z
    date available2017-05-08T22:32:39Z
    date copyrightJuly 2016
    date issued2016
    identifier other49070860.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/82347
    description abstractThe need for accurate material models to simulate the deformation, damage, and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. There are a variety of material models currently available within commercial transient dynamic finite-element codes to analyze the response of composite materials under impact conditions. However, there are several features that are lacking in the currently available models that could improve the predictive capability of the impact simulations. To address these needs, a combined elasto-plastic model with damage suitable for implementation within transient dynamic finite-element codes has been developed. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. Currently, the model development efforts have focused on creating the plasticity portion of the model. A commonly used composite failure model has been generalized and extended to a strain-hardening-based orthotropic yield function with a non-associative flow rule. The coefficients of the yield function are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients of the flow rule are determined in a systematic manner based on the available stress-strain data for the material. The evolution of the yield surface is examined, in detail, for a sample composite. A numerical algorithm based on the classic radial return method is employed to compute the evolution of the effective plastic strain. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed model. The developed material model is suitable for use within commercial transient dynamic finite-element codes for use in analyzing the nonlinear response of polymer composites.
    publisherAmerican Society of Civil Engineers
    titleDevelopment of an Orthotropic Elasto-Plastic Generalized Composite Material Model Suitable for Impact Problems
    typeJournal Paper
    journal volume29
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000580
    treeJournal of Aerospace Engineering:;2016:;Volume ( 029 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian