YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parallel Systems and Structural Frames Realignment Planning and Actuation Strategy

    Source: Journal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 004
    Author:
    Mohammad Nahangi
    ,
    Thomas Czerniawski
    ,
    Carl T. Haas
    ,
    Scott Walbridge
    ,
    Jeffrey West
    DOI: 10.1061/(ASCE)CP.1943-5487.0000545
    Publisher: American Society of Civil Engineers
    Abstract: Parallel structural systems and assemblies are challenging to erect, align and plumb on construction sites due to their complex geometries and current heuristic realignment strategies. Examples of parallel systems include complicated pipe modules and pipe racks in the industrial construction sector. This paper presents a generalized approach analogous to robotics and inverse kinematics for building parallel systems’ realignment planning, introduced using a series approach. In addition to the calculation of a realignment strategy, feasible applications of such a strategy are also investigated in this paper. The framework for realigning parallel systems has two primary steps: (1) as-built status identification by capturing the geometric state of construction assemblies using three-dimensional (3D) imaging theories, and (2) realignment calculation and actuation based on degrees of freedom (DOFs) defined during the development of the kinematics chains of assemblies. A Quasi-Newton-Raphson (QNR) method is employed for solving the kinematics equation of the inverse kinematics analogy. Experimental results show that the developed algorithms are sufficiently accurate to capture any incurred geometrical discrepancies in parallel construction assemblies and proactively calculate and plan for efficient realignment strategies. Generalization of realignment calculation for parallel systems and realignment actuation are the key contributions of this work.
    • Download: (12.80Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parallel Systems and Structural Frames Realignment Planning and Actuation Strategy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/81987
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorMohammad Nahangi
    contributor authorThomas Czerniawski
    contributor authorCarl T. Haas
    contributor authorScott Walbridge
    contributor authorJeffrey West
    date accessioned2017-05-08T22:31:24Z
    date available2017-05-08T22:31:24Z
    date copyrightJuly 2016
    date issued2016
    identifier other48323549.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/81987
    description abstractParallel structural systems and assemblies are challenging to erect, align and plumb on construction sites due to their complex geometries and current heuristic realignment strategies. Examples of parallel systems include complicated pipe modules and pipe racks in the industrial construction sector. This paper presents a generalized approach analogous to robotics and inverse kinematics for building parallel systems’ realignment planning, introduced using a series approach. In addition to the calculation of a realignment strategy, feasible applications of such a strategy are also investigated in this paper. The framework for realigning parallel systems has two primary steps: (1) as-built status identification by capturing the geometric state of construction assemblies using three-dimensional (3D) imaging theories, and (2) realignment calculation and actuation based on degrees of freedom (DOFs) defined during the development of the kinematics chains of assemblies. A Quasi-Newton-Raphson (QNR) method is employed for solving the kinematics equation of the inverse kinematics analogy. Experimental results show that the developed algorithms are sufficiently accurate to capture any incurred geometrical discrepancies in parallel construction assemblies and proactively calculate and plan for efficient realignment strategies. Generalization of realignment calculation for parallel systems and realignment actuation are the key contributions of this work.
    publisherAmerican Society of Civil Engineers
    titleParallel Systems and Structural Frames Realignment Planning and Actuation Strategy
    typeJournal Paper
    journal volume30
    journal issue4
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000545
    treeJournal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian