YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison and Implementation of Multiple Model Structural Identification Methods

    Source: Journal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 011
    Author:
    N. C. Dubbs
    ,
    F. L. Moon
    DOI: 10.1061/(ASCE)ST.1943-541X.0001284
    Publisher: American Society of Civil Engineers
    Abstract: Although multiple-model structural identification (MM ST-ID) approaches appear to offer clear, conceptual benefits over single-model approaches, they have not yet been employed within a transparent scenario that will allow quantitative comparison, critique, and refinement. To fill this gap, the research reported in this paper aimed to (1) implement and compare current MM ST-ID approaches on a physical laboratory model to establish their accuracy and identify their merits and shortcomings, and (2) identify the ability to refine MM ST-ID methods by weighing observations based on their correlation with the desired predictions. The scenario implemented used modal parameters as the observations, and static displacements and strains as the desired predictions. The various MM ST-ID methods were evaluated based on how their prediction distributions agreed with the actual responses of the physical model. The results indicated that while all methods were successful in bounding the actual responses, the Bayesian updating approach proved to be the most efficient in terms of required number of simulations, and was able to produce prediction distributions with the smallest bounds (while still incorporating all measured responses). In addition, the mean of the MM ST-ID prediction distributions did not coincide with the model that had the largest weight (i.e., the highest likelihood), which indicates that single model approaches not only are unable to provide estimates of variability, but may produce biased predictions. Finally, through a second set of scenarios, the research reported in this paper showed how prediction distributions may be improved by weighing observations based on their correlation with the desired predictions.
    • Download: (9.317Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison and Implementation of Multiple Model Structural Identification Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/81754
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorN. C. Dubbs
    contributor authorF. L. Moon
    date accessioned2017-05-08T22:30:33Z
    date available2017-05-08T22:30:33Z
    date copyrightNovember 2015
    date issued2015
    identifier other47556781.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/81754
    description abstractAlthough multiple-model structural identification (MM ST-ID) approaches appear to offer clear, conceptual benefits over single-model approaches, they have not yet been employed within a transparent scenario that will allow quantitative comparison, critique, and refinement. To fill this gap, the research reported in this paper aimed to (1) implement and compare current MM ST-ID approaches on a physical laboratory model to establish their accuracy and identify their merits and shortcomings, and (2) identify the ability to refine MM ST-ID methods by weighing observations based on their correlation with the desired predictions. The scenario implemented used modal parameters as the observations, and static displacements and strains as the desired predictions. The various MM ST-ID methods were evaluated based on how their prediction distributions agreed with the actual responses of the physical model. The results indicated that while all methods were successful in bounding the actual responses, the Bayesian updating approach proved to be the most efficient in terms of required number of simulations, and was able to produce prediction distributions with the smallest bounds (while still incorporating all measured responses). In addition, the mean of the MM ST-ID prediction distributions did not coincide with the model that had the largest weight (i.e., the highest likelihood), which indicates that single model approaches not only are unable to provide estimates of variability, but may produce biased predictions. Finally, through a second set of scenarios, the research reported in this paper showed how prediction distributions may be improved by weighing observations based on their correlation with the desired predictions.
    publisherAmerican Society of Civil Engineers
    titleComparison and Implementation of Multiple Model Structural Identification Methods
    typeJournal Paper
    journal volume141
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001284
    treeJournal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian