YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Water Hammer in a Horizontal Rectangular Conduit Containing Air-Water Two-Phase Slug Flow

    Source: Journal of Hydraulic Engineering:;2016:;Volume ( 142 ):;issue: 003
    Author:
    Amin Eyhavand-Koohzadi
    ,
    Seyed M. Borghei
    ,
    Abdorreza Kabiri-Samani
    DOI: 10.1061/(ASCE)HY.1943-7900.0001098
    Publisher: American Society of Civil Engineers
    Abstract: The study of water hammer in air-water, two-phase flows in hydraulic structures such as pressurized pipelines and tunnels, siphons, culverts, and junctions is of great importance for design purposes. Water hammer if combined with a periodic slug flow would lead to severe periodic transient pressure fluctuations inside the conduit. Laboratory experiments have been conducted to investigate water-hammer pressure inside a horizontal rectangular conduit carrying a two-phase, air-water slug flow. Tests were performed in an experimental apparatus comprising a 6.8-m-long transparent pipeline 0.06 m wide and 0.1 m high. By rapidly closing a control gate at the end of the conduit, propagating pressure surges were generated. Transient pressure fluctuations were recorded by means of pressure transducers. Furthermore, a digital camera was used to document flow properties and air-bubble characteristics throughout the pipeline. Pressure measurements along the pipe indicated that two scenarios could be considered as (1) below the gas pocket (Type 1), and (2) below the liquid column (Type 2). Results demonstrated that at the downstream sections, pressure oscillations in Type 2 are sharp, quickly damping, and associated with great maximum pressures (up to 50 times the initial pressure). However, other sections were observed to have low-frequency pressure oscillations, which were damped gradually. Likewise, the latter has also been observed throughout the conduit in Type 1. Results confirmed that the transient wave speed is no longer constant as in the single-phase flow, and it varies along the pipeline depending on variations in local pressure and local void fraction. It was found that besides the control gate, damping time in Type 2 increases with the air/water rates ratio. However, this parameter for Type 1 remains relatively constant and is independent of the air/water rates ratio.
    • Download: (1.688Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Water Hammer in a Horizontal Rectangular Conduit Containing Air-Water Two-Phase Slug Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/81626
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorAmin Eyhavand-Koohzadi
    contributor authorSeyed M. Borghei
    contributor authorAbdorreza Kabiri-Samani
    date accessioned2017-05-08T22:30:04Z
    date available2017-05-08T22:30:04Z
    date copyrightMarch 2016
    date issued2016
    identifier other47102845.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/81626
    description abstractThe study of water hammer in air-water, two-phase flows in hydraulic structures such as pressurized pipelines and tunnels, siphons, culverts, and junctions is of great importance for design purposes. Water hammer if combined with a periodic slug flow would lead to severe periodic transient pressure fluctuations inside the conduit. Laboratory experiments have been conducted to investigate water-hammer pressure inside a horizontal rectangular conduit carrying a two-phase, air-water slug flow. Tests were performed in an experimental apparatus comprising a 6.8-m-long transparent pipeline 0.06 m wide and 0.1 m high. By rapidly closing a control gate at the end of the conduit, propagating pressure surges were generated. Transient pressure fluctuations were recorded by means of pressure transducers. Furthermore, a digital camera was used to document flow properties and air-bubble characteristics throughout the pipeline. Pressure measurements along the pipe indicated that two scenarios could be considered as (1) below the gas pocket (Type 1), and (2) below the liquid column (Type 2). Results demonstrated that at the downstream sections, pressure oscillations in Type 2 are sharp, quickly damping, and associated with great maximum pressures (up to 50 times the initial pressure). However, other sections were observed to have low-frequency pressure oscillations, which were damped gradually. Likewise, the latter has also been observed throughout the conduit in Type 1. Results confirmed that the transient wave speed is no longer constant as in the single-phase flow, and it varies along the pipeline depending on variations in local pressure and local void fraction. It was found that besides the control gate, damping time in Type 2 increases with the air/water rates ratio. However, this parameter for Type 1 remains relatively constant and is independent of the air/water rates ratio.
    publisherAmerican Society of Civil Engineers
    titleWater Hammer in a Horizontal Rectangular Conduit Containing Air-Water Two-Phase Slug Flow
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001098
    treeJournal of Hydraulic Engineering:;2016:;Volume ( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian