YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quasi-Static Cyclic Testing of Two-Thirds Scale Unbonded Posttensioned Rocking Dissipative Timber Walls

    Source: Journal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 004
    Author:
    Francesco Sarti
    ,
    Alessandro Palermo
    ,
    Stefano Pampanin
    DOI: 10.1061/(ASCE)ST.1943-541X.0001291
    Publisher: American Society of Civil Engineers
    Abstract: Posttensioning low-damage technologies were first developed in the late 1990s as the main outcome of the U.S. Precast Seismic Structural System (PRESSS) program coordinated by the University of California, San Diego, and culminated with the pseudo-dynamic test of a large-scale five-story test building. The extension of posttensioned techniques to timber elements led to the development of new structural systems, referred to as Pres-Lam (prestressed laminated timber). Pres-Lam systems consist of timber structural frames or walls made of laminated veneer lumber, glue laminated timber (Glulam), or cross-laminated timber (CLT). Pres-Lam walls consist of a rocking timber element with unbonded posttensioned tendons running through the length and attached to the foundation, which provides a centering force to the wall, while energy dissipation is supplied by either internal or external mild steel dissipaters. Previous tests carried out on posttensioned timber walls focused on small-scale (one-third) specimens with the main objective of evaluating the general response of the system. The main objective of the experimental program herein presented is the testing and estimating of the response of a series two-thirds-scale posttensioned walls, with alternative arrangements and combination of dissipaters and posttensioning, focusing on the construction details adopted in real practice. The paper first presents a brief discussion on the seismic demand evaluation based on the displacement-based design approach. The construction detailing of the steel dissipater connections, posttensioning anchorage, and shear keys are then presented. The main objectives of this experimental program were the investigation of the experimental behavior of large-scale posttensioned timber walls, with particular focus on the system connection detailing and optimization of posttensioning anchorage, fastening of the dissipation devices, and shear keys. The program consisted of several quasi-static cyclic tests considering different steel dissipater configurations, different levels of posttensioning initial stress, and different dissipater options were considered: both internal and external mild steel tension-compression yield devices were used. The experimental results showed the performance of posttensioned timber wall systems, which provide a high level of dissipation while showing negligible residual displacements and negligible damage to the wall element. The final part of the paper presents the experimental evaluation of the area-based hysteretic damping for the tested specimens, and the results highlight the great influence of the connection detailing of the dissipaters.
    • Download: (45.35Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quasi-Static Cyclic Testing of Two-Thirds Scale Unbonded Posttensioned Rocking Dissipative Timber Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/81489
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorFrancesco Sarti
    contributor authorAlessandro Palermo
    contributor authorStefano Pampanin
    date accessioned2017-05-08T22:29:34Z
    date available2017-05-08T22:29:34Z
    date copyrightApril 2016
    date issued2016
    identifier other46722628.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/81489
    description abstractPosttensioning low-damage technologies were first developed in the late 1990s as the main outcome of the U.S. Precast Seismic Structural System (PRESSS) program coordinated by the University of California, San Diego, and culminated with the pseudo-dynamic test of a large-scale five-story test building. The extension of posttensioned techniques to timber elements led to the development of new structural systems, referred to as Pres-Lam (prestressed laminated timber). Pres-Lam systems consist of timber structural frames or walls made of laminated veneer lumber, glue laminated timber (Glulam), or cross-laminated timber (CLT). Pres-Lam walls consist of a rocking timber element with unbonded posttensioned tendons running through the length and attached to the foundation, which provides a centering force to the wall, while energy dissipation is supplied by either internal or external mild steel dissipaters. Previous tests carried out on posttensioned timber walls focused on small-scale (one-third) specimens with the main objective of evaluating the general response of the system. The main objective of the experimental program herein presented is the testing and estimating of the response of a series two-thirds-scale posttensioned walls, with alternative arrangements and combination of dissipaters and posttensioning, focusing on the construction details adopted in real practice. The paper first presents a brief discussion on the seismic demand evaluation based on the displacement-based design approach. The construction detailing of the steel dissipater connections, posttensioning anchorage, and shear keys are then presented. The main objectives of this experimental program were the investigation of the experimental behavior of large-scale posttensioned timber walls, with particular focus on the system connection detailing and optimization of posttensioning anchorage, fastening of the dissipation devices, and shear keys. The program consisted of several quasi-static cyclic tests considering different steel dissipater configurations, different levels of posttensioning initial stress, and different dissipater options were considered: both internal and external mild steel tension-compression yield devices were used. The experimental results showed the performance of posttensioned timber wall systems, which provide a high level of dissipation while showing negligible residual displacements and negligible damage to the wall element. The final part of the paper presents the experimental evaluation of the area-based hysteretic damping for the tested specimens, and the results highlight the great influence of the connection detailing of the dissipaters.
    publisherAmerican Society of Civil Engineers
    titleQuasi-Static Cyclic Testing of Two-Thirds Scale Unbonded Posttensioned Rocking Dissipative Timber Walls
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001291
    treeJournal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian