YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation on Quasi-Steady and Unsteady Self-Excited Aerodynamic Forces on Cable and Rivulet

    Source: Journal of Engineering Mechanics:;2016:;Volume ( 142 ):;issue: 001
    Author:
    Shouying Li
    ,
    Zhengqing Chen
    ,
    Wenfeng Sun
    ,
    Shouke Li
    DOI: 10.1061/(ASCE)EM.1943-7889.0000961
    Publisher: American Society of Civil Engineers
    Abstract: The aerodynamic forces on the cable and rivulet are usually determined by the quasi-steady method, which cannot take signature turbulence into account. Furthermore, the oscillation of the cable and rivulet might have significant effects on the aerodynamic forces. In this study, a series of wind tunnel tests were carried out to measure the wind pressures on a cable-rivulet test model, which can keep static and moving statuses utilizing a forced vibration system developed at Hunan University. Wind pressures measured on the test model surface were then used to integrate the drag and lift forces of the cable and rivulet. The results show that vertical vibration of the test model has little effect on the pressure distribution on the cable and rivulet and the mean wind pressures are not very sensitive to the vibration of test model. On the other hand, the oscillation of the rivulet on the cable surface seems to significantly amplify the fluctuating pressures. A sudden decrease of the lift coefficient was observed when the rivulet position is close to 60°, which indicates that classical galloping could be evoked. Eight aerodynamic derivatives of the cable and the rivulet were also identified based on the experimental data, and these aerodynamic derivatives can be further used to determine the unsteady self-excited aerodynamic forces on the cable and rivulet. Overall, this study shows that compared with the quasi-steady aerodynamic forces, the unsteady self-excited aerodynamic forces are more consistent with the exact values.
    • Download: (913.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation on Quasi-Steady and Unsteady Self-Excited Aerodynamic Forces on Cable and Rivulet

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/81480
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorShouying Li
    contributor authorZhengqing Chen
    contributor authorWenfeng Sun
    contributor authorShouke Li
    date accessioned2017-05-08T22:29:32Z
    date available2017-05-08T22:29:32Z
    date copyrightJanuary 2016
    date issued2016
    identifier other46722620.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/81480
    description abstractThe aerodynamic forces on the cable and rivulet are usually determined by the quasi-steady method, which cannot take signature turbulence into account. Furthermore, the oscillation of the cable and rivulet might have significant effects on the aerodynamic forces. In this study, a series of wind tunnel tests were carried out to measure the wind pressures on a cable-rivulet test model, which can keep static and moving statuses utilizing a forced vibration system developed at Hunan University. Wind pressures measured on the test model surface were then used to integrate the drag and lift forces of the cable and rivulet. The results show that vertical vibration of the test model has little effect on the pressure distribution on the cable and rivulet and the mean wind pressures are not very sensitive to the vibration of test model. On the other hand, the oscillation of the rivulet on the cable surface seems to significantly amplify the fluctuating pressures. A sudden decrease of the lift coefficient was observed when the rivulet position is close to 60°, which indicates that classical galloping could be evoked. Eight aerodynamic derivatives of the cable and the rivulet were also identified based on the experimental data, and these aerodynamic derivatives can be further used to determine the unsteady self-excited aerodynamic forces on the cable and rivulet. Overall, this study shows that compared with the quasi-steady aerodynamic forces, the unsteady self-excited aerodynamic forces are more consistent with the exact values.
    publisherAmerican Society of Civil Engineers
    titleExperimental Investigation on Quasi-Steady and Unsteady Self-Excited Aerodynamic Forces on Cable and Rivulet
    typeJournal Paper
    journal volume142
    journal issue1
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000961
    treeJournal of Engineering Mechanics:;2016:;Volume ( 142 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian