YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sparse Null Space Algorithms for Hydraulic Analysis of Large-Scale Water Supply Networks

    Source: Journal of Hydraulic Engineering:;2016:;Volume ( 142 ):;issue: 003
    Author:
    Edo Abraham
    ,
    Ivan Stoianov
    DOI: 10.1061/(ASCE)HY.1943-7900.0001089
    Publisher: American Society of Civil Engineers
    Abstract: In this article, a comprehensive review of existing methods is presented and computationally efficient sparse null space algorithms are proposed for the hydraulic analysis of water distribution networks. The linear systems at each iteration of the Newton method for nonlinear equations are solved using a null space algorithm. The sparsity structure of these linear equations, which arises from the sparse network connectivity, is exploited to reduce computations. A significant fraction of the total flops in the Newton method are spent in computing pipe head losses and matrix-matrix multiplications involving flows. Because most flows converge after a few iterations, a novel partial update of head losses and matrix products is used to further reduce computational complexity. Convergence analyses are also presented for the partial-update formulas. A new heuristic for reducing the number of pressure head computations of a null space method is proposed. These savings enable fast near-real-time control of large-scale water networks. It is often observed that the linear equations that arise in solving the hydraulic equations become ill-conditioned due to hydraulic solutions with very small and zero flows. The condition numbers of the Newton equations are bounded using a regularization technique with insignificant computational overheads. The convergence properties of all proposed algorithms are analyzed by posing them as an inexact-Newton method. Small-scale to large-scale models of operational water networks are used to evaluate the proposed algorithms.
    • Download: (3.451Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sparse Null Space Algorithms for Hydraulic Analysis of Large-Scale Water Supply Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/81444
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorEdo Abraham
    contributor authorIvan Stoianov
    date accessioned2017-05-08T22:29:25Z
    date available2017-05-08T22:29:25Z
    date copyrightMarch 2016
    date issued2016
    identifier other46591391.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/81444
    description abstractIn this article, a comprehensive review of existing methods is presented and computationally efficient sparse null space algorithms are proposed for the hydraulic analysis of water distribution networks. The linear systems at each iteration of the Newton method for nonlinear equations are solved using a null space algorithm. The sparsity structure of these linear equations, which arises from the sparse network connectivity, is exploited to reduce computations. A significant fraction of the total flops in the Newton method are spent in computing pipe head losses and matrix-matrix multiplications involving flows. Because most flows converge after a few iterations, a novel partial update of head losses and matrix products is used to further reduce computational complexity. Convergence analyses are also presented for the partial-update formulas. A new heuristic for reducing the number of pressure head computations of a null space method is proposed. These savings enable fast near-real-time control of large-scale water networks. It is often observed that the linear equations that arise in solving the hydraulic equations become ill-conditioned due to hydraulic solutions with very small and zero flows. The condition numbers of the Newton equations are bounded using a regularization technique with insignificant computational overheads. The convergence properties of all proposed algorithms are analyzed by posing them as an inexact-Newton method. Small-scale to large-scale models of operational water networks are used to evaluate the proposed algorithms.
    publisherAmerican Society of Civil Engineers
    titleSparse Null Space Algorithms for Hydraulic Analysis of Large-Scale Water Supply Networks
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001089
    treeJournal of Hydraulic Engineering:;2016:;Volume ( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian