YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Semianalytical Solution for a Flow over Multilayered Soils

    Source: Journal of Engineering Mechanics:;2015:;Volume ( 141 ):;issue: 009
    Author:
    Yen-Ti Lin
    ,
    Ping-Cheng Hsieh
    DOI: 10.1061/(ASCE)EM.1943-7889.0000949
    Publisher: American Society of Civil Engineers
    Abstract: In nature, the ground is usually composed of different soils. To simplify the soil structure, we only consider the case of parallel soil layers with a small inclined angle to the horizontal. When a ground surface without vegetative cover is subjected to a rainfall event, overland flow will happen eventually. Therefore, a mathematical model is presented herein to study the integrated surface and subsurface flows over multilayered soils with and without rainfall. The upper layer is a homogeneous water flow over the ground, and the lower layer is a pore-water flow through permeable parallel multilayered soils with infinite thickness. Both water flows are considered as laminar flows. The flow profiles, vertical velocity distribution, and shear-stress distribution are solved analytically by introducing adequate parameters. Furthermore, when a uniform rainfall event is under consideration, the fourth-order Runge–Kutta technique is used to solve the flow profiles. In addition, the phreatic surface is also depicted for the cases of larger slopes; this has never been discussed in the literature.
    • Download: (1012.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Semianalytical Solution for a Flow over Multilayered Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/81282
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorYen-Ti Lin
    contributor authorPing-Cheng Hsieh
    date accessioned2017-05-08T22:28:48Z
    date available2017-05-08T22:28:48Z
    date copyrightSeptember 2015
    date issued2015
    identifier other46303659.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/81282
    description abstractIn nature, the ground is usually composed of different soils. To simplify the soil structure, we only consider the case of parallel soil layers with a small inclined angle to the horizontal. When a ground surface without vegetative cover is subjected to a rainfall event, overland flow will happen eventually. Therefore, a mathematical model is presented herein to study the integrated surface and subsurface flows over multilayered soils with and without rainfall. The upper layer is a homogeneous water flow over the ground, and the lower layer is a pore-water flow through permeable parallel multilayered soils with infinite thickness. Both water flows are considered as laminar flows. The flow profiles, vertical velocity distribution, and shear-stress distribution are solved analytically by introducing adequate parameters. Furthermore, when a uniform rainfall event is under consideration, the fourth-order Runge–Kutta technique is used to solve the flow profiles. In addition, the phreatic surface is also depicted for the cases of larger slopes; this has never been discussed in the literature.
    publisherAmerican Society of Civil Engineers
    titleSemianalytical Solution for a Flow over Multilayered Soils
    typeJournal Paper
    journal volume141
    journal issue9
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000949
    treeJournal of Engineering Mechanics:;2015:;Volume ( 141 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian