YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Infrastructure Deterioration Prediction with a Poisson Hidden Markov Model on Time Series Data

    Source: Journal of Infrastructure Systems:;2015:;Volume ( 021 ):;issue: 003
    Author:
    Nam Lethanh
    ,
    Kiyoyuki Kaito
    ,
    Kiyoshi Kobayashi
    DOI: 10.1061/(ASCE)IS.1943-555X.0000242
    Publisher: American Society of Civil Engineers
    Abstract: The deterioration of a pavement surface can be described in terms of the presence and severity of distinct distresses, like potholes, cracking, and rutting. Each deterioration process is ordinarily described by a set of pavement indicators (e.g., number of potholes, percentage of cracks, international roughness index) that are measured during monitoring and inspection activities. Manifestly, there exist statistical correlations among the deterioration processes. For instance, cracks appearing on a road section may contribute to an increase in pothole occurrence, and vice versa. In order to mathematically formulate the statistical interdependency among deterioration processes, a Poisson hidden Markov model is proposed in this paper. The model describes the complex process of pavement deterioration, which includes the frequent occurrence of local damage (e.g., potholes) as well as the degradation of other pavement indicators (e.g., cracks, roughness). To model the concurrent frequency of local damage, a stochastic Poisson process is used. At the same time, a Markov chain model is used to depict the degradation of other pavement indicators. A numerical estimation approach using Bayesian statistics with a Markov chain Monte Carlo simulation is developed to derive the values of the model’s parameters based on historical information. The applicability of the model was demonstrated through an empirical example using data from a Japanese highway road link.
    • Download: (619.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Infrastructure Deterioration Prediction with a Poisson Hidden Markov Model on Time Series Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/81235
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorNam Lethanh
    contributor authorKiyoyuki Kaito
    contributor authorKiyoshi Kobayashi
    date accessioned2017-05-08T22:28:33Z
    date available2017-05-08T22:28:33Z
    date copyrightSeptember 2015
    date issued2015
    identifier other46231799.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/81235
    description abstractThe deterioration of a pavement surface can be described in terms of the presence and severity of distinct distresses, like potholes, cracking, and rutting. Each deterioration process is ordinarily described by a set of pavement indicators (e.g., number of potholes, percentage of cracks, international roughness index) that are measured during monitoring and inspection activities. Manifestly, there exist statistical correlations among the deterioration processes. For instance, cracks appearing on a road section may contribute to an increase in pothole occurrence, and vice versa. In order to mathematically formulate the statistical interdependency among deterioration processes, a Poisson hidden Markov model is proposed in this paper. The model describes the complex process of pavement deterioration, which includes the frequent occurrence of local damage (e.g., potholes) as well as the degradation of other pavement indicators (e.g., cracks, roughness). To model the concurrent frequency of local damage, a stochastic Poisson process is used. At the same time, a Markov chain model is used to depict the degradation of other pavement indicators. A numerical estimation approach using Bayesian statistics with a Markov chain Monte Carlo simulation is developed to derive the values of the model’s parameters based on historical information. The applicability of the model was demonstrated through an empirical example using data from a Japanese highway road link.
    publisherAmerican Society of Civil Engineers
    titleInfrastructure Deterioration Prediction with a Poisson Hidden Markov Model on Time Series Data
    typeJournal Paper
    journal volume21
    journal issue3
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/(ASCE)IS.1943-555X.0000242
    treeJournal of Infrastructure Systems:;2015:;Volume ( 021 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian