YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow in Open Channel with Complex Solid Boundary

    Source: Journal of Hydraulic Engineering:;2016:;Volume ( 142 ):;issue: 002
    Author:
    Yakun Guo
    DOI: 10.1061/(ASCE)HY.1943-7900.0001085
    Publisher: American Society of Civil Engineers
    Abstract: A two-dimensional steady potential flow theory is applied to calculate the flow in an open channel with complex solid boundaries. The boundary integral equations for the problem under investigation are first derived in an auxiliary plane by taking the Cauchy integral principal values. To overcome the difficulties of a nonlinear curvilinear solid boundary character and free water surface not being known a priori, the boundary integral equations are transformed to the physical plane by substituting the integral variables. As such, the proposed approach has the following advantages: (1) the angle of the curvilinear solid boundary as well as the location of free water surface (initially assumed) is a known function of coordinates in physical plane; and (2) the meshes can be flexibly assigned on the solid and free water surface boundaries along which the integration is performed. This avoids the difficulty of the traditional potential flow theory, which seeks a function to conformally map the geometry in physical plane onto an auxiliary plane. Furthermore, rough bed friction-induced energy loss is estimated using the Darcy-Weisbach equation and is solved together with the boundary integral equations using the proposed iterative method. The method has no stringent requirement for initial free-water surface position, while traditional potential flow methods usually have strict requirement for the initial free-surface profiles to ensure that the numerical computation is stable and convergent. Several typical open-channel flows have been calculated with high accuracy and limited computational time, indicating that the proposed method has general suitability for open-channel flows with complex geometry.
    • Download: (1.387Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow in Open Channel with Complex Solid Boundary

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/81056
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorYakun Guo
    date accessioned2017-05-08T22:27:55Z
    date available2017-05-08T22:27:55Z
    date copyrightFebruary 2016
    date issued2016
    identifier other45837182.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/81056
    description abstractA two-dimensional steady potential flow theory is applied to calculate the flow in an open channel with complex solid boundaries. The boundary integral equations for the problem under investigation are first derived in an auxiliary plane by taking the Cauchy integral principal values. To overcome the difficulties of a nonlinear curvilinear solid boundary character and free water surface not being known a priori, the boundary integral equations are transformed to the physical plane by substituting the integral variables. As such, the proposed approach has the following advantages: (1) the angle of the curvilinear solid boundary as well as the location of free water surface (initially assumed) is a known function of coordinates in physical plane; and (2) the meshes can be flexibly assigned on the solid and free water surface boundaries along which the integration is performed. This avoids the difficulty of the traditional potential flow theory, which seeks a function to conformally map the geometry in physical plane onto an auxiliary plane. Furthermore, rough bed friction-induced energy loss is estimated using the Darcy-Weisbach equation and is solved together with the boundary integral equations using the proposed iterative method. The method has no stringent requirement for initial free-water surface position, while traditional potential flow methods usually have strict requirement for the initial free-surface profiles to ensure that the numerical computation is stable and convergent. Several typical open-channel flows have been calculated with high accuracy and limited computational time, indicating that the proposed method has general suitability for open-channel flows with complex geometry.
    publisherAmerican Society of Civil Engineers
    titleFlow in Open Channel with Complex Solid Boundary
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001085
    treeJournal of Hydraulic Engineering:;2016:;Volume ( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian