YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strain Rate Effect on Development Length of Steel Reinforcement

    Source: Journal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 011
    Author:
    Lauren Toikka
    ,
    Abass Braimah
    ,
    Ghani Razaqpur
    ,
    Simon Foo
    DOI: 10.1061/(ASCE)ST.1943-541X.0001288
    Publisher: American Society of Civil Engineers
    Abstract: Accidental or premeditated explosions have detrimental effects on the infrastructure near the center of explosion and pose major threats to human life. Thus, research is currently underway to study the effects of explosions on infrastructure systems with the ultimate goal of minimizing infrastructure damage and saving lives. Because reinforced concrete is the most common building material used in blast-resistant infrastructure design and construction, understanding the effect of blast loads on reinforced concrete components is essential to reaching this goal. The prevailing design philosophy for blast-resistant structures is energy dissipation through reinforcement yielding (ductility) and large bending deformations without the incidence of nonductile failure modes such as shear and bond. However, information regarding the bond behavior and strength of steel reinforcement–concrete bonds under blast loads is rather scant; therefore, this paper reports on an experimental program designed to investigate the strain rate effect on steel reinforcement–concrete bond. Reinforced concrete beams longitudinally reinforced with 15M, 20M, or 25M were tested in a shock tube under simulated blast loading. The test results show that high strain rate increases the steel reinforcement–concrete bond strength and thus, that the static load development lengths of these bars are adequate for developing their dynamic yield strengths at high strain rate. The dynamic increase factor for bond stress is determined to be 1.11 for 15M, 2.24 for 20M, and 3.68 for 25M bar.
    • Download: (5.367Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strain Rate Effect on Development Length of Steel Reinforcement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/80937
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorLauren Toikka
    contributor authorAbass Braimah
    contributor authorGhani Razaqpur
    contributor authorSimon Foo
    date accessioned2017-05-08T22:27:32Z
    date available2017-05-08T22:27:32Z
    date copyrightNovember 2015
    date issued2015
    identifier other45738028.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/80937
    description abstractAccidental or premeditated explosions have detrimental effects on the infrastructure near the center of explosion and pose major threats to human life. Thus, research is currently underway to study the effects of explosions on infrastructure systems with the ultimate goal of minimizing infrastructure damage and saving lives. Because reinforced concrete is the most common building material used in blast-resistant infrastructure design and construction, understanding the effect of blast loads on reinforced concrete components is essential to reaching this goal. The prevailing design philosophy for blast-resistant structures is energy dissipation through reinforcement yielding (ductility) and large bending deformations without the incidence of nonductile failure modes such as shear and bond. However, information regarding the bond behavior and strength of steel reinforcement–concrete bonds under blast loads is rather scant; therefore, this paper reports on an experimental program designed to investigate the strain rate effect on steel reinforcement–concrete bond. Reinforced concrete beams longitudinally reinforced with 15M, 20M, or 25M were tested in a shock tube under simulated blast loading. The test results show that high strain rate increases the steel reinforcement–concrete bond strength and thus, that the static load development lengths of these bars are adequate for developing their dynamic yield strengths at high strain rate. The dynamic increase factor for bond stress is determined to be 1.11 for 15M, 2.24 for 20M, and 3.68 for 25M bar.
    publisherAmerican Society of Civil Engineers
    titleStrain Rate Effect on Development Length of Steel Reinforcement
    typeJournal Paper
    journal volume141
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001288
    treeJournal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian