YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    CFFT Bridge Columns for Multihazard Resilience

    Source: Journal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 008
    Author:
    Alicia Echevarria
    ,
    Arash E. Zaghi
    ,
    Richard Christenson
    ,
    Michael Accorsi
    DOI: 10.1061/(ASCE)ST.1943-541X.0001292
    Publisher: American Society of Civil Engineers
    Abstract: Bridges play a significant role in postevent recovery and disaster resiliency of communities. Recent megadisasters, such as the 2011 Great East Japan Earthquake, have prompted the technical community to understand the robustness of infrastructure when subjected to extreme events and the shortcomings of conventional structural systems under multiple hazards. Columns are the most critical load-carrying elements of bridge structures. Enhancing the robustness of bridge columns can improve the resiliency of the bridge itself and the surrounding community by reducing repair costs and downtime after an extreme event. In recent years, the concrete-filled fiber reinforced polymer (FRP) tube (CFFT) system has been widely investigated as a durable and cost-effective alternative design for more robust bridge columns. However, the current AASHTO guide specifications are limited to nonductile, unreinforced CFFT elements. This study summarizes the findings of blast, fire, and seismic experiments performed on CFFT specimens containing minimal longitudinal reinforcement. The residual axial load-carrying capacities of damaged reinforced concrete (RC) and CFFT columns are obtained as a measure of robustness, and estimated restoration times and repair costs are presented for each type of column and each hazard. Subsequently, a set of experimentally validated design equations are developed for the axial and flexural resistance of lightly reinforced CFFT columns in a compatible format with the AASHTO load resistance factor design (LRFD) Guide Specifications for the Design of CFFTs. A formulation for displacement-based seismic design of lightly reinforced CFFT columns is presented, and a provision for the fire protection of this column system is proposed. By presenting a set of experimentally validated design formulations, this study is expected to promote the application of lightly reinforced CFFT columns to enhance the multihazard resilience of bridge infrastructure.
    • Download: (22.74Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      CFFT Bridge Columns for Multihazard Resilience

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/80844
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAlicia Echevarria
    contributor authorArash E. Zaghi
    contributor authorRichard Christenson
    contributor authorMichael Accorsi
    date accessioned2017-05-08T22:27:08Z
    date available2017-05-08T22:27:08Z
    date copyrightAugust 2016
    date issued2016
    identifier other45478273.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/80844
    description abstractBridges play a significant role in postevent recovery and disaster resiliency of communities. Recent megadisasters, such as the 2011 Great East Japan Earthquake, have prompted the technical community to understand the robustness of infrastructure when subjected to extreme events and the shortcomings of conventional structural systems under multiple hazards. Columns are the most critical load-carrying elements of bridge structures. Enhancing the robustness of bridge columns can improve the resiliency of the bridge itself and the surrounding community by reducing repair costs and downtime after an extreme event. In recent years, the concrete-filled fiber reinforced polymer (FRP) tube (CFFT) system has been widely investigated as a durable and cost-effective alternative design for more robust bridge columns. However, the current AASHTO guide specifications are limited to nonductile, unreinforced CFFT elements. This study summarizes the findings of blast, fire, and seismic experiments performed on CFFT specimens containing minimal longitudinal reinforcement. The residual axial load-carrying capacities of damaged reinforced concrete (RC) and CFFT columns are obtained as a measure of robustness, and estimated restoration times and repair costs are presented for each type of column and each hazard. Subsequently, a set of experimentally validated design equations are developed for the axial and flexural resistance of lightly reinforced CFFT columns in a compatible format with the AASHTO load resistance factor design (LRFD) Guide Specifications for the Design of CFFTs. A formulation for displacement-based seismic design of lightly reinforced CFFT columns is presented, and a provision for the fire protection of this column system is proposed. By presenting a set of experimentally validated design formulations, this study is expected to promote the application of lightly reinforced CFFT columns to enhance the multihazard resilience of bridge infrastructure.
    publisherAmerican Society of Civil Engineers
    titleCFFT Bridge Columns for Multihazard Resilience
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001292
    treeJournal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian