YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Prediction of the Young’s Modulus of Concrete with Spheroidal Aggregates

    Source: Journal of Materials in Civil Engineering:;2016:;Volume ( 028 ):;issue: 001
    Author:
    Jianjun Zheng
    ,
    Xinzhu Zhou
    ,
    Linzhu Sun
    DOI: 10.1061/(ASCE)MT.1943-5533.0001344
    Publisher: American Society of Civil Engineers
    Abstract: The Young’s modulus of concrete is an important mechanical parameter for assessing the stiffness of concrete structures. The objective of this paper is to present an analytical method for evaluating the Young’s modulus of concrete with spheroidal aggregates. In this method, the interfacial transition zone (ITZ) between aggregates and the bulk cement paste is treated as an independent phase. To reduce mathematical complexity, the three-phase concrete is decomposed into two two-phase composite materials and modeled through a two-step procedure. After the validity of the analytical method is verified with three sets of experimental data, a sensitivity analysis is conducted to quantify various factors that affect the Young’s modulus of concrete. The numerical results show that the Young’s modulus of concrete increases with the increase of the maximum size and aspect ratio of aggregate but decreases by increasing the ITZ thickness. It is also shown that the aggregate gradation influences the Young’s modulus of concrete to a certain extent.
    • Download: (317.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Prediction of the Young’s Modulus of Concrete with Spheroidal Aggregates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/80840
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJianjun Zheng
    contributor authorXinzhu Zhou
    contributor authorLinzhu Sun
    date accessioned2017-05-08T22:27:07Z
    date available2017-05-08T22:27:07Z
    date copyrightJanuary 2016
    date issued2016
    identifier other45478271.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/80840
    description abstractThe Young’s modulus of concrete is an important mechanical parameter for assessing the stiffness of concrete structures. The objective of this paper is to present an analytical method for evaluating the Young’s modulus of concrete with spheroidal aggregates. In this method, the interfacial transition zone (ITZ) between aggregates and the bulk cement paste is treated as an independent phase. To reduce mathematical complexity, the three-phase concrete is decomposed into two two-phase composite materials and modeled through a two-step procedure. After the validity of the analytical method is verified with three sets of experimental data, a sensitivity analysis is conducted to quantify various factors that affect the Young’s modulus of concrete. The numerical results show that the Young’s modulus of concrete increases with the increase of the maximum size and aspect ratio of aggregate but decreases by increasing the ITZ thickness. It is also shown that the aggregate gradation influences the Young’s modulus of concrete to a certain extent.
    publisherAmerican Society of Civil Engineers
    titleAnalytical Prediction of the Young’s Modulus of Concrete with Spheroidal Aggregates
    typeJournal Paper
    journal volume28
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0001344
    treeJournal of Materials in Civil Engineering:;2016:;Volume ( 028 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian