YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Nanomechanics and Micromechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Nanomechanics and Micromechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Creep of Lubricated Layered Nano-Porous Solids and Application To Cementitious Materials

    Source: Journal of Nanomechanics and Micromechanics:;2015:;Volume ( 005 ):;issue: 004
    Author:
    Matthieu Vandamme
    ,
    Zdeněk P. Bažant
    ,
    Sinan Keten
    DOI: 10.1061/(ASCE)NM.2153-5477.0000102
    Publisher: American Society of Civil Engineers
    Abstract: A variety of geomaterials, such as cementitious or clay-based materials, has on the nano-scale a layered microstructure that can contain fluid in its nano-porous space. The creep of such nano-scale basic units is what causes the macroscopic creep. Here, one nano-pore whose walls consist of two parallel infinite solid layers interacting through Lennard-Jones potential is studied. The authors evaluate numerically the energy barriers that such a system needs to overcome for the two solid layers to slide over each other and show how this sliding depends on the longitudinal and transverse forces applied to the layers. The energy barriers translate into a dependence of the apparent viscosity of the system on the disjoining pressure in a manner consistent with the microprestress theory. This result makes it possible to explain why the longtime creep of cementitious materials is logarithmic. The experimental data on how the long-term logarithmic creep of cementitious materials depends on the temperature and relative humidity is then considered. This model can capture the observed dependencies if not only the energy barriers induced by the interactions between layers but also the influence of the interlayer fluid, which is water in the case of cementitious materials, is taken into account. This fluid is modeled as a continuum with the same properties as the bulk fluid.
    • Download: (615.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Creep of Lubricated Layered Nano-Porous Solids and Application To Cementitious Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/80692
    Collections
    • Journal of Nanomechanics and Micromechanics

    Show full item record

    contributor authorMatthieu Vandamme
    contributor authorZdeněk P. Bažant
    contributor authorSinan Keten
    date accessioned2017-05-08T22:26:30Z
    date available2017-05-08T22:26:30Z
    date copyrightDecember 2015
    date issued2015
    identifier other45112148.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/80692
    description abstractA variety of geomaterials, such as cementitious or clay-based materials, has on the nano-scale a layered microstructure that can contain fluid in its nano-porous space. The creep of such nano-scale basic units is what causes the macroscopic creep. Here, one nano-pore whose walls consist of two parallel infinite solid layers interacting through Lennard-Jones potential is studied. The authors evaluate numerically the energy barriers that such a system needs to overcome for the two solid layers to slide over each other and show how this sliding depends on the longitudinal and transverse forces applied to the layers. The energy barriers translate into a dependence of the apparent viscosity of the system on the disjoining pressure in a manner consistent with the microprestress theory. This result makes it possible to explain why the longtime creep of cementitious materials is logarithmic. The experimental data on how the long-term logarithmic creep of cementitious materials depends on the temperature and relative humidity is then considered. This model can capture the observed dependencies if not only the energy barriers induced by the interactions between layers but also the influence of the interlayer fluid, which is water in the case of cementitious materials, is taken into account. This fluid is modeled as a continuum with the same properties as the bulk fluid.
    publisherAmerican Society of Civil Engineers
    titleCreep of Lubricated Layered Nano-Porous Solids and Application To Cementitious Materials
    typeJournal Paper
    journal volume5
    journal issue4
    journal titleJournal of Nanomechanics and Micromechanics
    identifier doi10.1061/(ASCE)NM.2153-5477.0000102
    treeJournal of Nanomechanics and Micromechanics:;2015:;Volume ( 005 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian