YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Climate Change Assessment of Water Resources in Sabah and Sarawak, Malaysia, Based on Dynamically-Downscaled GCM Projections Using a Regional Hydroclimate Model

    Source: Journal of Hydrologic Engineering:;2016:;Volume ( 021 ):;issue: 001
    Author:
    M. Z. M. Amin
    ,
    A. J. Shaaban
    ,
    N. Ohara
    ,
    M. L. Kavvas
    ,
    Z. Q. Chen
    ,
    S. Kure
    ,
    S. Jang
    DOI: 10.1061/(ASCE)HE.1943-5584.0001242
    Publisher: American Society of Civil Engineers
    Abstract: Climate change’s impact on the Sabah and Sarawak water resources in the Northern sector of the Borneo Island, Malaysia, was assessed based on the dynamically-downscaled general circulation model projections (GCMPs) by means of a regional hydroclimate model (RegHCM). Four future projections under the special report on emissions scenarios (SRES) A1B emission scenario from two general circulation models (GCMs) were selected for this study. The RegHCM, which is a coupled nonhydrostatic atmospheric and upscaled land surface process model, is capable of downscaling the outputs of these GCMPs (GCM projections) to the watershed scale at a 9-km grid resolution at hourly time intervals for hundreds of years—a simulation for 420 years was performed in this study. This dynamic downscaling by the RegHCM can incorporate the detailed soil and land-cover data. It is shown in this article that utilizing a methodology that incorporates a GCM, a RegHCM, and a hydrological routing model allows assessing climate change on the hydrologic conditions at the watershed scale. It is revealed that the effect of climate change in the states of Sabah and Sarawak can be quite heterogeneous. Furthermore, it is shown that the effect of a projected land-cover change over a geographical region, such as Sabah and Sarawak, can be evaluated in the future using the RegHCM described in this study. Results indicate that the increase in oil palm plantations in Sabah and Sarawak may not significantly affect the local water resources. In order to improve the assessment accuracy of land-use change, further investigation on the model parameters associated with future land-cover information is desirable.
    • Download: (9.667Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Climate Change Assessment of Water Resources in Sabah and Sarawak, Malaysia, Based on Dynamically-Downscaled GCM Projections Using a Regional Hydroclimate Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/80581
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorM. Z. M. Amin
    contributor authorA. J. Shaaban
    contributor authorN. Ohara
    contributor authorM. L. Kavvas
    contributor authorZ. Q. Chen
    contributor authorS. Kure
    contributor authorS. Jang
    date accessioned2017-05-08T22:26:04Z
    date available2017-05-08T22:26:04Z
    date copyrightJanuary 2016
    date issued2016
    identifier other44897825.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/80581
    description abstractClimate change’s impact on the Sabah and Sarawak water resources in the Northern sector of the Borneo Island, Malaysia, was assessed based on the dynamically-downscaled general circulation model projections (GCMPs) by means of a regional hydroclimate model (RegHCM). Four future projections under the special report on emissions scenarios (SRES) A1B emission scenario from two general circulation models (GCMs) were selected for this study. The RegHCM, which is a coupled nonhydrostatic atmospheric and upscaled land surface process model, is capable of downscaling the outputs of these GCMPs (GCM projections) to the watershed scale at a 9-km grid resolution at hourly time intervals for hundreds of years—a simulation for 420 years was performed in this study. This dynamic downscaling by the RegHCM can incorporate the detailed soil and land-cover data. It is shown in this article that utilizing a methodology that incorporates a GCM, a RegHCM, and a hydrological routing model allows assessing climate change on the hydrologic conditions at the watershed scale. It is revealed that the effect of climate change in the states of Sabah and Sarawak can be quite heterogeneous. Furthermore, it is shown that the effect of a projected land-cover change over a geographical region, such as Sabah and Sarawak, can be evaluated in the future using the RegHCM described in this study. Results indicate that the increase in oil palm plantations in Sabah and Sarawak may not significantly affect the local water resources. In order to improve the assessment accuracy of land-use change, further investigation on the model parameters associated with future land-cover information is desirable.
    publisherAmerican Society of Civil Engineers
    titleClimate Change Assessment of Water Resources in Sabah and Sarawak, Malaysia, Based on Dynamically-Downscaled GCM Projections Using a Regional Hydroclimate Model
    typeJournal Paper
    journal volume21
    journal issue1
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001242
    treeJournal of Hydrologic Engineering:;2016:;Volume ( 021 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian