YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Real-Time Hybrid Simulation with Online Model Updating: Methodology and Implementation

    Source: Journal of Engineering Mechanics:;2016:;Volume ( 142 ):;issue: 002
    Author:
    Xiaoyun Shao
    ,
    Adam Mueller
    ,
    Bilal Ahmed Mohammed
    DOI: 10.1061/(ASCE)EM.1943-7889.0000987
    Publisher: American Society of Civil Engineers
    Abstract: Hybrid simulations have shown great potential for economic and reliable assessment of structural seismic performance by combining physical experimentation on part of the structural system and numerical simulation of the remaining structural components. Current hybrid simulation practices often use a fixed numerical model without considering the possible availability of a more-accurate model obtained during hybrid simulation through an online model updating technique. To address this limitation and improve the reliability of numerical models in hybrid simulations, this paper presents a method and an implementation procedure of conducting real-time hybrid simulation (RTHS) with online model updating. The Unscented Kalman Filter (UKF) was adopted as the parameter identification algorithm applied to the Bouc-Wen model that defines the hysteresis of the experimental substructure. The identified parameters are then used to update the models of the numerical substructures during RTHS. A parametric study of the UKF system model parameters is carried out first to determine the optimum values to be used in the verification experiments. Then RTHS of a three-story steel shear building model is conducted and the effectiveness of online model updating in RTHS and the proposed implementation procedure is demonstrated. Guidelines for implementing the UKF for online model updating in RTHS and research needs for further development are discussed.
    • Download: (6.406Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Real-Time Hybrid Simulation with Online Model Updating: Methodology and Implementation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/80376
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorXiaoyun Shao
    contributor authorAdam Mueller
    contributor authorBilal Ahmed Mohammed
    date accessioned2017-05-08T22:25:28Z
    date available2017-05-08T22:25:28Z
    date copyrightFebruary 2016
    date issued2016
    identifier other44426448.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/80376
    description abstractHybrid simulations have shown great potential for economic and reliable assessment of structural seismic performance by combining physical experimentation on part of the structural system and numerical simulation of the remaining structural components. Current hybrid simulation practices often use a fixed numerical model without considering the possible availability of a more-accurate model obtained during hybrid simulation through an online model updating technique. To address this limitation and improve the reliability of numerical models in hybrid simulations, this paper presents a method and an implementation procedure of conducting real-time hybrid simulation (RTHS) with online model updating. The Unscented Kalman Filter (UKF) was adopted as the parameter identification algorithm applied to the Bouc-Wen model that defines the hysteresis of the experimental substructure. The identified parameters are then used to update the models of the numerical substructures during RTHS. A parametric study of the UKF system model parameters is carried out first to determine the optimum values to be used in the verification experiments. Then RTHS of a three-story steel shear building model is conducted and the effectiveness of online model updating in RTHS and the proposed implementation procedure is demonstrated. Guidelines for implementing the UKF for online model updating in RTHS and research needs for further development are discussed.
    publisherAmerican Society of Civil Engineers
    titleReal-Time Hybrid Simulation with Online Model Updating: Methodology and Implementation
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000987
    treeJournal of Engineering Mechanics:;2016:;Volume ( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian