YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tensile Strain Hardening Behavior of PVA Fiber-Reinforced Engineered Geopolymer Composite

    Source: Journal of Materials in Civil Engineering:;2015:;Volume ( 027 ):;issue: 010
    Author:
    Behzad Nematollahi
    ,
    Jay Sanjayan
    ,
    Faiz Uddin Ahmed Shaikh
    DOI: 10.1061/(ASCE)MT.1943-5533.0001242
    Publisher: American Society of Civil Engineers
    Abstract: This paper is aimed to improve the mechanical properties (namely compressive and tensile strengths) of a recently developed fly ash-based engineered geopolymer composite (EGC) with relatively low-concentration activator combinations. In this regard, four different activator combinations (including two Na-based solutions and one K-based activator solution, and one lime-based activator combination in the form of powder) were used to develop the fly ash-based EGCs exhibiting strain hardening behavior under uniaxial tension. Randomly oriented short polyvinyl alcohol (PVA) fibers (2% v/v) were used to reinforce the relatively brittle low-calcium (Class F) fly ash-based geopolymer matrix. The matrix and composite properties of the developed fly ash-based EGCs [including workability of the fresh matrix, density, compressive strength, matrix fracture properties (comprising elastic modulus, fracture toughness, and composite crack tip toughness), and uniaxial tensile behavior] were evaluated. A counterpart conventional engineered cementitious composite (ECC) with a water-to-cement ratio corresponding to the activator solution to fly ash ratio of the EGCs was also made for comparison. Experimental results revealed that in fly ash-based EGCs, the use of Na-based activator combination composed of 8.0 M NaOH solution (28.6% w/w) and
    • Download: (11.03Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tensile Strain Hardening Behavior of PVA Fiber-Reinforced Engineered Geopolymer Composite

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/80116
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorBehzad Nematollahi
    contributor authorJay Sanjayan
    contributor authorFaiz Uddin Ahmed Shaikh
    date accessioned2017-05-08T22:24:46Z
    date available2017-05-08T22:24:46Z
    date copyrightOctober 2015
    date issued2015
    identifier other44253404.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/80116
    description abstractThis paper is aimed to improve the mechanical properties (namely compressive and tensile strengths) of a recently developed fly ash-based engineered geopolymer composite (EGC) with relatively low-concentration activator combinations. In this regard, four different activator combinations (including two Na-based solutions and one K-based activator solution, and one lime-based activator combination in the form of powder) were used to develop the fly ash-based EGCs exhibiting strain hardening behavior under uniaxial tension. Randomly oriented short polyvinyl alcohol (PVA) fibers (2% v/v) were used to reinforce the relatively brittle low-calcium (Class F) fly ash-based geopolymer matrix. The matrix and composite properties of the developed fly ash-based EGCs [including workability of the fresh matrix, density, compressive strength, matrix fracture properties (comprising elastic modulus, fracture toughness, and composite crack tip toughness), and uniaxial tensile behavior] were evaluated. A counterpart conventional engineered cementitious composite (ECC) with a water-to-cement ratio corresponding to the activator solution to fly ash ratio of the EGCs was also made for comparison. Experimental results revealed that in fly ash-based EGCs, the use of Na-based activator combination composed of 8.0 M NaOH solution (28.6% w/w) and
    publisherAmerican Society of Civil Engineers
    titleTensile Strain Hardening Behavior of PVA Fiber-Reinforced Engineered Geopolymer Composite
    typeJournal Paper
    journal volume27
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0001242
    treeJournal of Materials in Civil Engineering:;2015:;Volume ( 027 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian