YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Automatic Horizontal Curve Identification and Measurement Method Using GPS Data

    Source: Journal of Transportation Engineering, Part A: Systems:;2015:;Volume ( 141 ):;issue: 002
    Author:
    Chengbo Ai
    ,
    Yichang (James) Tsai
    DOI: 10.1061/(ASCE)TE.1943-5436.0000740
    Publisher: American Society of Civil Engineers
    Abstract: Horizontal curves play a critical role in roadway safety by providing a smooth transition between tangent sections. Because radii of horizontal curves are one of the most fundamental elements in roadway geometry design, transportation agencies, e.g., state DOTs, need to measure them to support network-level safety analysis. However, the traditional methods that are commonly used by transportation agencies, e.g., plan sheet reading method and chord-offset method, are time consuming, labor intensive, and inaccurate. Although some semiautomatic and automatic methods have been developed using global positioning system (GPS) data and/or geographic information system (GIS) functions in recent years, these methods are not yet ready to be practically used in a network-level analysis because they either require intensive manual intervention or lack of the capability in automatically identifying complex curves. This study is aimed to develop a new method using widely available GPS data that can automatically identify all types of horizontal curves and measure the corresponding curve radii, including the most challenging spiral curve. The simulation test using 385 synthetic horizontal curves shows that the proposed method can correctly identify 90.1% of the tested curves and can accurately classify 87.3% of the detected curves types. The field test shows that the proposed method can correctly identify all of the 25 tested curves and can accurately measure the corresponding radii. The results from an experimental test clearly demonstrate the accuracy and effectiveness of the proposed method. A case study on Interstate 285 demonstrates that proposed method is a promising method for transportation agencies to achieve reliable and efficient network-level analysis.
    • Download: (34.98Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Automatic Horizontal Curve Identification and Measurement Method Using GPS Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/79468
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorChengbo Ai
    contributor authorYichang (James) Tsai
    date accessioned2017-05-08T22:23:34Z
    date available2017-05-08T22:23:34Z
    date copyrightFebruary 2015
    date issued2015
    identifier other43930045.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/79468
    description abstractHorizontal curves play a critical role in roadway safety by providing a smooth transition between tangent sections. Because radii of horizontal curves are one of the most fundamental elements in roadway geometry design, transportation agencies, e.g., state DOTs, need to measure them to support network-level safety analysis. However, the traditional methods that are commonly used by transportation agencies, e.g., plan sheet reading method and chord-offset method, are time consuming, labor intensive, and inaccurate. Although some semiautomatic and automatic methods have been developed using global positioning system (GPS) data and/or geographic information system (GIS) functions in recent years, these methods are not yet ready to be practically used in a network-level analysis because they either require intensive manual intervention or lack of the capability in automatically identifying complex curves. This study is aimed to develop a new method using widely available GPS data that can automatically identify all types of horizontal curves and measure the corresponding curve radii, including the most challenging spiral curve. The simulation test using 385 synthetic horizontal curves shows that the proposed method can correctly identify 90.1% of the tested curves and can accurately classify 87.3% of the detected curves types. The field test shows that the proposed method can correctly identify all of the 25 tested curves and can accurately measure the corresponding radii. The results from an experimental test clearly demonstrate the accuracy and effectiveness of the proposed method. A case study on Interstate 285 demonstrates that proposed method is a promising method for transportation agencies to achieve reliable and efficient network-level analysis.
    publisherAmerican Society of Civil Engineers
    titleAutomatic Horizontal Curve Identification and Measurement Method Using GPS Data
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000740
    treeJournal of Transportation Engineering, Part A: Systems:;2015:;Volume ( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian