YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Agronomic and Stream Nitrate Load Responses to Incentives for Bioenergy Crop Cultivation and Reductions of Carbon Emissions and Fertilizer Use

    Source: Journal of Water Resources Planning and Management:;2014:;Volume ( 140 ):;issue: 001
    Author:
    Tze Ling Ng
    ,
    J. Wayland Eheart
    ,
    Ximing Cai
    ,
    John B. Braden
    ,
    George F. Czapar
    DOI: 10.1061/(ASCE)WR.1943-5452.0000320
    Publisher: American Society of Civil Engineers
    Abstract: Excessive nitrate loads in surface waters are a major cause of hypoxia and eutrophication. In many places, agriculture is the single largest source of nitrogen entering receiving waters. Perennial energy grass crops have the potential to reduce nitrogen loads from agricultural areas, while sequestering carbon and offering new economic opportunities for farmers. This study analyzes farm system-scale cropping and fertilizer application decisions, and resulting nitrate loads, as driven by prices for the bioenergy crop miscanthus, as well as investigates reductions of carbon and other greenhouse gas emissions and nitrogen fertilizer use. An economic model of farm-system-scale decisions is coupled to a hydrologic-agronomic model of the physical stream system to obtain nitrate loading and crop yield results for varying combinations of prices and policies for a typical Midwestern agricultural watershed. For the scenarios examined, a large reduction in stream nitrate load depends on a high price for miscanthus relative to competing crops. A price for miscanthus that exceeds 50% of the average of corn and soybean prices, per unit weight, is estimated to lead to nitrate load reductions of 25% or more. Though significant, these reductions are still less than the recommended 45% reduction in stream nitrogen flux entering the Gulf of Mexico needed to mitigate the hypoxia problem in the gulf. Miscanthus prices are unlikely ever to reach such levels. However, nitrate load reductions could still be achieved by implementing a nitrogen fertilizer reduction subsidy alongside a miscanthus market. The results also show that carbon trading is unlikely to result in any significant reduction in nitrate load. The results are useful for improving understanding of the potential of these incentives, individually and concurrently, to reduce pollution from Midwestern crop agriculture.
    • Download: (381.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Agronomic and Stream Nitrate Load Responses to Incentives for Bioenergy Crop Cultivation and Reductions of Carbon Emissions and Fertilizer Use

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/79083
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorTze Ling Ng
    contributor authorJ. Wayland Eheart
    contributor authorXiming Cai
    contributor authorJohn B. Braden
    contributor authorGeorge F. Czapar
    date accessioned2017-05-08T22:22:45Z
    date available2017-05-08T22:22:45Z
    date copyrightJanuary 2014
    date issued2014
    identifier other43575795.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/79083
    description abstractExcessive nitrate loads in surface waters are a major cause of hypoxia and eutrophication. In many places, agriculture is the single largest source of nitrogen entering receiving waters. Perennial energy grass crops have the potential to reduce nitrogen loads from agricultural areas, while sequestering carbon and offering new economic opportunities for farmers. This study analyzes farm system-scale cropping and fertilizer application decisions, and resulting nitrate loads, as driven by prices for the bioenergy crop miscanthus, as well as investigates reductions of carbon and other greenhouse gas emissions and nitrogen fertilizer use. An economic model of farm-system-scale decisions is coupled to a hydrologic-agronomic model of the physical stream system to obtain nitrate loading and crop yield results for varying combinations of prices and policies for a typical Midwestern agricultural watershed. For the scenarios examined, a large reduction in stream nitrate load depends on a high price for miscanthus relative to competing crops. A price for miscanthus that exceeds 50% of the average of corn and soybean prices, per unit weight, is estimated to lead to nitrate load reductions of 25% or more. Though significant, these reductions are still less than the recommended 45% reduction in stream nitrogen flux entering the Gulf of Mexico needed to mitigate the hypoxia problem in the gulf. Miscanthus prices are unlikely ever to reach such levels. However, nitrate load reductions could still be achieved by implementing a nitrogen fertilizer reduction subsidy alongside a miscanthus market. The results also show that carbon trading is unlikely to result in any significant reduction in nitrate load. The results are useful for improving understanding of the potential of these incentives, individually and concurrently, to reduce pollution from Midwestern crop agriculture.
    publisherAmerican Society of Civil Engineers
    titleAgronomic and Stream Nitrate Load Responses to Incentives for Bioenergy Crop Cultivation and Reductions of Carbon Emissions and Fertilizer Use
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0000320
    treeJournal of Water Resources Planning and Management:;2014:;Volume ( 140 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian