YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Proper Orthogonal Decomposition in Fast Fourier Transform—Assisted Multivariate Nonstationary Process Simulation

    Source: Journal of Engineering Mechanics:;2015:;Volume ( 141 ):;issue: 007
    Author:
    Guoqing Huang
    DOI: 10.1061/(ASCE)EM.1943-7889.0000923
    Publisher: American Society of Civil Engineers
    Abstract: The classic spectral representation method (SRM)-based nonstationary process simulation algorithm is used extensively in the engineering community. However, it is less efficient owing to the unavailability of fast Fourier transform (FFT). In this paper, an efficient, almost accurate, and straightforward algorithm is developed for the simulation of the multivariate nonstationary process. In this method, an evolutionary spectral matrix is decomposed via Cholesky method, and then proper orthogonal decomposition (POD) is used to factorize decomposed spectra as the summation of the products of time and frequency functions. Because original time-dependent decomposed spectra are decoupled via factorization, FFT can be used to significantly expedite the simulation efficiency. This POD-based factorization is totally data-driven and optimal, and fewer items are required in matching decomposed spectra. Therefore, the accuracy and efficiency of the factorization can be guaranteed at the same time. Another attractive feature of this factorization is straightforwardness, because only regular eigenvector decomposition is involved. Numerical examples of nonstationary processes are used to demonstrate the effectiveness and accuracy of the proposed approach. Results show that the factorization and simulation agree with the targets very well. In addition, the speed at which sample functions are generated is significantly improved over classic SRM, in which the full summation of sine/cosine terms is needed.
    • Download: (2.580Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Proper Orthogonal Decomposition in Fast Fourier Transform—Assisted Multivariate Nonstationary Process Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/79017
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorGuoqing Huang
    date accessioned2017-05-08T22:22:32Z
    date available2017-05-08T22:22:32Z
    date copyrightJuly 2015
    date issued2015
    identifier other43575625.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/79017
    description abstractThe classic spectral representation method (SRM)-based nonstationary process simulation algorithm is used extensively in the engineering community. However, it is less efficient owing to the unavailability of fast Fourier transform (FFT). In this paper, an efficient, almost accurate, and straightforward algorithm is developed for the simulation of the multivariate nonstationary process. In this method, an evolutionary spectral matrix is decomposed via Cholesky method, and then proper orthogonal decomposition (POD) is used to factorize decomposed spectra as the summation of the products of time and frequency functions. Because original time-dependent decomposed spectra are decoupled via factorization, FFT can be used to significantly expedite the simulation efficiency. This POD-based factorization is totally data-driven and optimal, and fewer items are required in matching decomposed spectra. Therefore, the accuracy and efficiency of the factorization can be guaranteed at the same time. Another attractive feature of this factorization is straightforwardness, because only regular eigenvector decomposition is involved. Numerical examples of nonstationary processes are used to demonstrate the effectiveness and accuracy of the proposed approach. Results show that the factorization and simulation agree with the targets very well. In addition, the speed at which sample functions are generated is significantly improved over classic SRM, in which the full summation of sine/cosine terms is needed.
    publisherAmerican Society of Civil Engineers
    titleApplication of Proper Orthogonal Decomposition in Fast Fourier Transform—Assisted Multivariate Nonstationary Process Simulation
    typeJournal Paper
    journal volume141
    journal issue7
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000923
    treeJournal of Engineering Mechanics:;2015:;Volume ( 141 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian