YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Permanent Strain of Unsaturated Unbound Granular Materials from Construction and Demolition Waste

    Source: Journal of Materials in Civil Engineering:;2015:;Volume ( 027 ):;issue: 003
    Author:
    A. M. Azam
    ,
    D. A. Cameron
    ,
    M. M. Rahman
    DOI: 10.1061/(ASCE)MT.1943-5533.0001052
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a new equation for estimating the permanent strain of different combinations of recycled clay masonry and recycled concrete aggregate using the concept of matric suction. The aim of this paper was to develop a new equation with a single set of constants for all the materials. The unbound granular material (UGM) was prepared at moisture contents ranging between 70 and 90% of optimum moisture content (OMC) and tested in a repeated-load triaxial test (RLTT) apparatus under a single-stress state. Soil water characteristic curves (SWCC) were established for each material by preparing samples at various moisture contents and measuring matric suction with filter papers. In order to obtain the wet end of the SWCC, further samples were conditioned on a tension plate at suctions controlled by the hanging water column method. Permanent strain was influenced by moisture content or suction and was found to provide a better correlation with suction than with moisture content. Permanent deformation under a single-stress state was able to be estimated successfully using an equation developed on the basis of number of load repetitions, initial matric suction, dry density ratio, weighted plasticity index, and masonry content in the blend. Sets of material constants were found for all UGMs. It is shown that the equation can be used with a single set of constants to provide satisfactory predictions of permanent strain (
    • Download: (13.46Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Permanent Strain of Unsaturated Unbound Granular Materials from Construction and Demolition Waste

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/78833
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorA. M. Azam
    contributor authorD. A. Cameron
    contributor authorM. M. Rahman
    date accessioned2017-05-08T22:22:05Z
    date available2017-05-08T22:22:05Z
    date copyrightMarch 2015
    date issued2015
    identifier other43412296.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/78833
    description abstractThis paper presents a new equation for estimating the permanent strain of different combinations of recycled clay masonry and recycled concrete aggregate using the concept of matric suction. The aim of this paper was to develop a new equation with a single set of constants for all the materials. The unbound granular material (UGM) was prepared at moisture contents ranging between 70 and 90% of optimum moisture content (OMC) and tested in a repeated-load triaxial test (RLTT) apparatus under a single-stress state. Soil water characteristic curves (SWCC) were established for each material by preparing samples at various moisture contents and measuring matric suction with filter papers. In order to obtain the wet end of the SWCC, further samples were conditioned on a tension plate at suctions controlled by the hanging water column method. Permanent strain was influenced by moisture content or suction and was found to provide a better correlation with suction than with moisture content. Permanent deformation under a single-stress state was able to be estimated successfully using an equation developed on the basis of number of load repetitions, initial matric suction, dry density ratio, weighted plasticity index, and masonry content in the blend. Sets of material constants were found for all UGMs. It is shown that the equation can be used with a single set of constants to provide satisfactory predictions of permanent strain (
    publisherAmerican Society of Civil Engineers
    titlePermanent Strain of Unsaturated Unbound Granular Materials from Construction and Demolition Waste
    typeJournal Paper
    journal volume27
    journal issue3
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0001052
    treeJournal of Materials in Civil Engineering:;2015:;Volume ( 027 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian