YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Presliding Shear Failure in Prestressed RC Beams. II: Behavior

    Source: Journal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 010
    Author:
    Tao Zhang
    ,
    Phillip Visintin
    ,
    Deric J. Oehlers
    ,
    Michael C. Griffith
    DOI: 10.1061/(ASCE)ST.1943-541X.0000984
    Publisher: American Society of Civil Engineers
    Abstract: In the companion paper, based on the theories of partial interaction and shear friction, a mechanics-based segmental approach, which can cope with any cross section and material property, was developed to simulate the shear behavior and failure of prestressed concrete beams with and without stirrups. The included equations and mechanisms are purely mechanics-based and independent of empirical material properties. In this paper, this numerical approach has been applied to describe the shear behavior of prestressed RC members. The effect of prestress on the shear behavior is explained, and the results of parametric studies on stirrup effectiveness are also shown. Published test beams with and without stirrups, 102 of them, have been analyzed by the proposed model and analytical results show good agreement with the experimental data. The average predicted results for the beams without stirrups being 96% of the test results and that for the beams with stirrups being 91% with coefficients of variation of 0.10 and 0.08, respectively. The equations provided by the ACI standard have been used to calculate the shear strength of the same test specimens, and the ACI shear provisions are shown to be quite conservative with an average of 67 and 74% and coefficients of variation of 0.29 and 0.18 for beams with and without stirrups. The influence of the random nature of cracks on the shear strength is also investigated.
    • Download: (740.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Presliding Shear Failure in Prestressed RC Beams. II: Behavior

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/78727
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorTao Zhang
    contributor authorPhillip Visintin
    contributor authorDeric J. Oehlers
    contributor authorMichael C. Griffith
    date accessioned2017-05-08T22:21:49Z
    date available2017-05-08T22:21:49Z
    date copyrightOctober 2014
    date issued2014
    identifier other43287626.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/78727
    description abstractIn the companion paper, based on the theories of partial interaction and shear friction, a mechanics-based segmental approach, which can cope with any cross section and material property, was developed to simulate the shear behavior and failure of prestressed concrete beams with and without stirrups. The included equations and mechanisms are purely mechanics-based and independent of empirical material properties. In this paper, this numerical approach has been applied to describe the shear behavior of prestressed RC members. The effect of prestress on the shear behavior is explained, and the results of parametric studies on stirrup effectiveness are also shown. Published test beams with and without stirrups, 102 of them, have been analyzed by the proposed model and analytical results show good agreement with the experimental data. The average predicted results for the beams without stirrups being 96% of the test results and that for the beams with stirrups being 91% with coefficients of variation of 0.10 and 0.08, respectively. The equations provided by the ACI standard have been used to calculate the shear strength of the same test specimens, and the ACI shear provisions are shown to be quite conservative with an average of 67 and 74% and coefficients of variation of 0.29 and 0.18 for beams with and without stirrups. The influence of the random nature of cracks on the shear strength is also investigated.
    publisherAmerican Society of Civil Engineers
    titlePresliding Shear Failure in Prestressed RC Beams. II: Behavior
    typeJournal Paper
    journal volume140
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0000984
    treeJournal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian