YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Identification of a Self-Sensing Magnetorheological Damper Using Soft Computing

    Source: Journal of Engineering Mechanics:;2015:;Volume ( 141 ):;issue: 007
    Author:
    Y. Q. Ni
    ,
    Z. H. Chen
    ,
    S. W. Or
    DOI: 10.1061/(ASCE)EM.1943-7889.0000930
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents the development and application of a soft-computing technique in identification of forward and inverse dynamics of a self-sensing magnetorheological (MR) damper based on experimental measurements. This technique is developed by the synthesis of an NARX (nonlinear autoregressive with exogenous inputs) model structure and neural network within a Bayesian inference framework. The Bayesian inference procedures essentially eschew overfitting that could occur in network learning and improve generalization (prediction) capability by regularizing the complexity of learning. In applying the developed technique to the self-sensing MR damper, the present and past information of its input and output quantities, which contain the physical knowledge of the damper, is used to formulate its nonlinear dynamics. The NARX network architecture is then optimized to enhance modeling effectiveness, efficiency, and robustness. Experimental data of the damper subjected to both harmonic and random excitations are used for model identification and assessment. Assessment results show that the formulated Bayesian NARX network accurately emulates the nonlinear forward dynamics of the self-sensing MR damper. Improved generalization (prediction) capability of the NARX network model by the Bayesian regulation is observed by comparing the modeling results with and without considering regularization. An inverse dynamic model for the self-sensing MR damper is further formulated by the developed technique. The proposed soft-computing technique is viable to formulate dynamic models of the self-sensing MR damper for structural control applications.
    • Download: (4.972Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Identification of a Self-Sensing Magnetorheological Damper Using Soft Computing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/78617
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorY. Q. Ni
    contributor authorZ. H. Chen
    contributor authorS. W. Or
    date accessioned2017-05-08T22:21:35Z
    date available2017-05-08T22:21:35Z
    date copyrightJuly 2015
    date issued2015
    identifier other43267647.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/78617
    description abstractThis paper presents the development and application of a soft-computing technique in identification of forward and inverse dynamics of a self-sensing magnetorheological (MR) damper based on experimental measurements. This technique is developed by the synthesis of an NARX (nonlinear autoregressive with exogenous inputs) model structure and neural network within a Bayesian inference framework. The Bayesian inference procedures essentially eschew overfitting that could occur in network learning and improve generalization (prediction) capability by regularizing the complexity of learning. In applying the developed technique to the self-sensing MR damper, the present and past information of its input and output quantities, which contain the physical knowledge of the damper, is used to formulate its nonlinear dynamics. The NARX network architecture is then optimized to enhance modeling effectiveness, efficiency, and robustness. Experimental data of the damper subjected to both harmonic and random excitations are used for model identification and assessment. Assessment results show that the formulated Bayesian NARX network accurately emulates the nonlinear forward dynamics of the self-sensing MR damper. Improved generalization (prediction) capability of the NARX network model by the Bayesian regulation is observed by comparing the modeling results with and without considering regularization. An inverse dynamic model for the self-sensing MR damper is further formulated by the developed technique. The proposed soft-computing technique is viable to formulate dynamic models of the self-sensing MR damper for structural control applications.
    publisherAmerican Society of Civil Engineers
    titleExperimental Identification of a Self-Sensing Magnetorheological Damper Using Soft Computing
    typeJournal Paper
    journal volume141
    journal issue7
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000930
    treeJournal of Engineering Mechanics:;2015:;Volume ( 141 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian