YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simple Method for Predicting Temperatures in Insulated, FRP-Strengthened RC Members Exposed to a Standard Fire

    Source: Journal of Composites for Construction:;2015:;Volume ( 019 ):;issue: 006
    Author:
    W. Y. Gao
    ,
    Jian-Guo Dai
    ,
    J. G. Teng
    DOI: 10.1061/(ASCE)CC.1943-5614.0000566
    Publisher: American Society of Civil Engineers
    Abstract: Fire safety is a significant concern for fiber-reinforced-polymer (FRP)–strengthened RC structures, particularly for indoor applications. To satisfy fire resistance requirements, fire insulation layers may be provided to protect FRP-strengthened RC members. This paper presents a simple, design-oriented method for predicting temperatures in insulated FRP-strengthened RC members under standard fire exposure. The proposed method consists of two sets of formulas: one set for predicting temperatures in unprotected FRP-strengthened RC members exposed to a standard fire; and another set to convert a fire insulation layer into an equivalent concrete layer. As a result, an insulated FRP-strengthened RC member can be analyzed as an unprotected RC member with an enlarged section for which a similar simple method has previously been established by these authors. In the present study, a finite element (FE) approach for the temperature analysis of insulated FRP-strengthened RC members was first developed and then verified using existing test data. Then the verified FE approach was employed in a parametric study to generate extensive numerical data, on which the second set of formulas were established. The proposed temperature prediction method is shown to provide accurate predictions of both FE results and test data of insulated FRP-strengthened RC members.
    • Download: (3.022Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simple Method for Predicting Temperatures in Insulated, FRP-Strengthened RC Members Exposed to a Standard Fire

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/78130
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorW. Y. Gao
    contributor authorJian-Guo Dai
    contributor authorJ. G. Teng
    date accessioned2017-05-08T22:20:24Z
    date available2017-05-08T22:20:24Z
    date copyrightDecember 2015
    date issued2015
    identifier other42116461.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/78130
    description abstractFire safety is a significant concern for fiber-reinforced-polymer (FRP)–strengthened RC structures, particularly for indoor applications. To satisfy fire resistance requirements, fire insulation layers may be provided to protect FRP-strengthened RC members. This paper presents a simple, design-oriented method for predicting temperatures in insulated FRP-strengthened RC members under standard fire exposure. The proposed method consists of two sets of formulas: one set for predicting temperatures in unprotected FRP-strengthened RC members exposed to a standard fire; and another set to convert a fire insulation layer into an equivalent concrete layer. As a result, an insulated FRP-strengthened RC member can be analyzed as an unprotected RC member with an enlarged section for which a similar simple method has previously been established by these authors. In the present study, a finite element (FE) approach for the temperature analysis of insulated FRP-strengthened RC members was first developed and then verified using existing test data. Then the verified FE approach was employed in a parametric study to generate extensive numerical data, on which the second set of formulas were established. The proposed temperature prediction method is shown to provide accurate predictions of both FE results and test data of insulated FRP-strengthened RC members.
    publisherAmerican Society of Civil Engineers
    titleSimple Method for Predicting Temperatures in Insulated, FRP-Strengthened RC Members Exposed to a Standard Fire
    typeJournal Paper
    journal volume19
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000566
    treeJournal of Composites for Construction:;2015:;Volume ( 019 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian