YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stress-Strain Behavior of FRP-Confined Recycled Aggregate Concrete

    Source: Journal of Composites for Construction:;2015:;Volume ( 019 ):;issue: 003
    Author:
    J. L. Zhao
    ,
    T. Yu
    ,
    J. G. Teng
    DOI: 10.1061/(ASCE)CC.1943-5614.0000513
    Publisher: American Society of Civil Engineers
    Abstract: A large amount of research has been conducted on recycled aggregate concrete (RAC) due to its social, environmental, and economic significance. However, the in situ application of RAC has so far been mainly limited to nonstructural purposes, as the performance of RAC, in both the short and long term, is inferior to its normal concrete counterpart. Existing research has shown that the performance of concrete in compression members can be significantly enhanced through external confinement using steel tubes and fiber-reinforced polymer (FRP) tubes/wraps. Some recent research has examined the behavior of steel tubes filled with RAC, but the research on the behavior of RAC confined with FRP has been rather limited. Research is therefore needed to better understand the stress-strain behavior of and develop a reliable stress-strain model for FRP-confined RAC to facilitate the design of members with FRP-confined RAC. This paper presents the results of the first systematic experimental study on the axial compressive behavior of FRP-confined RAC in which 18 FRP-confined RAC cylinders were tested. The effects of the replacement ratio of coarse aggregate (ratio between the mass of recycled coarse aggregate to the total mass of coarse aggregate) and degree of FRP confinement are investigated. Both the axial and lateral strain responses of the specimens are examined in detail. The test results show that specimens with a replacement ratio of 20% behave similarly to that of normal concrete, but specimens with a replacement ratio of 100% exhibit a lower strength and a different stress-strain response. The applicability of two existing stress-strain models for FRP-confined normal concrete to FRP-confined RAC is also examined.
    • Download: (6.463Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stress-Strain Behavior of FRP-Confined Recycled Aggregate Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/77802
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorJ. L. Zhao
    contributor authorT. Yu
    contributor authorJ. G. Teng
    date accessioned2017-05-08T22:19:44Z
    date available2017-05-08T22:19:44Z
    date copyrightJune 2015
    date issued2015
    identifier other41216453.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/77802
    description abstractA large amount of research has been conducted on recycled aggregate concrete (RAC) due to its social, environmental, and economic significance. However, the in situ application of RAC has so far been mainly limited to nonstructural purposes, as the performance of RAC, in both the short and long term, is inferior to its normal concrete counterpart. Existing research has shown that the performance of concrete in compression members can be significantly enhanced through external confinement using steel tubes and fiber-reinforced polymer (FRP) tubes/wraps. Some recent research has examined the behavior of steel tubes filled with RAC, but the research on the behavior of RAC confined with FRP has been rather limited. Research is therefore needed to better understand the stress-strain behavior of and develop a reliable stress-strain model for FRP-confined RAC to facilitate the design of members with FRP-confined RAC. This paper presents the results of the first systematic experimental study on the axial compressive behavior of FRP-confined RAC in which 18 FRP-confined RAC cylinders were tested. The effects of the replacement ratio of coarse aggregate (ratio between the mass of recycled coarse aggregate to the total mass of coarse aggregate) and degree of FRP confinement are investigated. Both the axial and lateral strain responses of the specimens are examined in detail. The test results show that specimens with a replacement ratio of 20% behave similarly to that of normal concrete, but specimens with a replacement ratio of 100% exhibit a lower strength and a different stress-strain response. The applicability of two existing stress-strain models for FRP-confined normal concrete to FRP-confined RAC is also examined.
    publisherAmerican Society of Civil Engineers
    titleStress-Strain Behavior of FRP-Confined Recycled Aggregate Concrete
    typeJournal Paper
    journal volume19
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000513
    treeJournal of Composites for Construction:;2015:;Volume ( 019 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian