YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Life Fragilities and Performance-Based Design of Wind Turbine Tower Base Connections

    Source: Journal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 007
    Author:
    Trung Q. Do
    ,
    John W. van de Lindt
    ,
    Hussam Mahmoud
    DOI: 10.1061/(ASCE)ST.1943-541X.0001150
    Publisher: American Society of Civil Engineers
    Abstract: Wind turbines are typically designed for a target service life of 20 years because of fatigue-related failures of the moving components such as the rotors and blades. Designing the tower to have the same lifetime as other components is clearly desirable for optimization of the wind turbine system. This study focuses on the fatigue life of the tower base connection subjected to wind loading. A simplified finite-element model for wind turbines subjected to nonlinear wind loading in time domain was developed specifically for application in this study. The relative motion between the wind speed and moving blades in the flapwise direction only creates force nonlinearity for the applied wind load and hence, necessitates application of a simple fluid/structure interaction model. Then, a model for fatigue assessment (Mode I), including crack propagation, was developed for the tower base connection. The inclusion of crack propagation is expected to extend the service life of the tower compared with conventional fatigue life analysis using the characteristic S-N approach. By varying the tower thickness, diameter, and considering predefined levels of crack propagation, fragility curves based on a fatigue life limit state are developed for application of performance-based design. The desired fatigue life of a wind turbine tower for different wind sites can be obtained based on the fragilities. Finally, performance-based design for a typical 5 MW wind turbine is used as an illustrative example in this study.
    • Download: (5.408Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Life Fragilities and Performance-Based Design of Wind Turbine Tower Base Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/77583
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorTrung Q. Do
    contributor authorJohn W. van de Lindt
    contributor authorHussam Mahmoud
    date accessioned2017-05-08T22:19:19Z
    date available2017-05-08T22:19:19Z
    date copyrightJuly 2015
    date issued2015
    identifier other40962762.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/77583
    description abstractWind turbines are typically designed for a target service life of 20 years because of fatigue-related failures of the moving components such as the rotors and blades. Designing the tower to have the same lifetime as other components is clearly desirable for optimization of the wind turbine system. This study focuses on the fatigue life of the tower base connection subjected to wind loading. A simplified finite-element model for wind turbines subjected to nonlinear wind loading in time domain was developed specifically for application in this study. The relative motion between the wind speed and moving blades in the flapwise direction only creates force nonlinearity for the applied wind load and hence, necessitates application of a simple fluid/structure interaction model. Then, a model for fatigue assessment (Mode I), including crack propagation, was developed for the tower base connection. The inclusion of crack propagation is expected to extend the service life of the tower compared with conventional fatigue life analysis using the characteristic S-N approach. By varying the tower thickness, diameter, and considering predefined levels of crack propagation, fragility curves based on a fatigue life limit state are developed for application of performance-based design. The desired fatigue life of a wind turbine tower for different wind sites can be obtained based on the fragilities. Finally, performance-based design for a typical 5 MW wind turbine is used as an illustrative example in this study.
    publisherAmerican Society of Civil Engineers
    titleFatigue Life Fragilities and Performance-Based Design of Wind Turbine Tower Base Connections
    typeJournal Paper
    journal volume141
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001150
    treeJournal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian