| contributor author | Poul V. Lade | |
| contributor author | Richard B. Nelson | |
| contributor author | Y. Marvin Ito | |
| date accessioned | 2017-05-08T22:18:39Z | |
| date available | 2017-05-08T22:18:39Z | |
| date copyright | September 1987 | |
| date issued | 1987 | |
| identifier other | %28asce%290733-9399%281987%29113%3A9%281302%29.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/77131 | |
| description abstract | Materials exhibiting nonassodated flow should, according to Drucker's stability postulate, become unstable when exposed to certain stress paths inside the failure surface. Results of a series of triaxial tests designed to expose the type of behavior displayed by granular materials are presented and discussed. The sand dilates during shear, it exhibits nonassociated flow, and when exposed to stress paths in the region of potential instability, none is observed. The reliability of the test results, the possible influence of viscous effects on the stability, and the effect of release of elastic energy are studied and discussed in detail. Thus, Drucker's stability postulate is not applicable to granular materials. The type of volume‐change behavior displayed by the material is of great importance in the question of stability of granular materials. | |
| publisher | American Society of Civil Engineers | |
| title | Nonassociated Flow and Stability of Granular Materials | |
| type | Journal Paper | |
| journal volume | 113 | |
| journal issue | 9 | |
| journal title | Journal of Engineering Mechanics | |
| identifier doi | 10.1061/(ASCE)0733-9399(1987)113:9(1302) | |
| tree | Journal of Engineering Mechanics:;1987:;Volume ( 113 ):;issue: 009 | |
| contenttype | Fulltext | |