YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Infrastructure Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Use of Unmanned Aerial Vehicle for Quantitative Infrastructure Evaluation

    Source: Journal of Infrastructure Systems:;2015:;Volume ( 021 ):;issue: 003
    Author:
    A. Ellenberg
    ,
    L. Branco
    ,
    A. Krick
    ,
    I. Bartoli
    ,
    A. Kontsos
    DOI: 10.1061/(ASCE)IS.1943-555X.0000246
    Publisher: American Society of Civil Engineers
    Abstract: Unmanned aerial vehicles (UAVs) allow remote imaging which can be useful in infrastructure condition evaluation. Furthermore, emerging noncontact sensing techniques such as digital imaging correlation (DIC) and other photogrammetric and visual approaches, including simultaneous localization and mapping (SLAM), can compute three-dimensional (3D) coordinates and perform deformation measurements as in the case of DIC/photogrammetry. A quantitative assessment of ways remote sensing in conjunction with UAVs could be implemented in practical applications is critically needed to leverage such capabilities in structural health monitoring (SHM). A comparative investigation of the remote sensing capabilities of a commercially availabl’e UAV, as well as both an optical metrology system known by the acronym TRITOP and the X-Box Kinect, is presented in this paper. The evidence provided demonstrates that red-green-blue cameras on UAVs could detect, from varying distances, cracks of sizes comparable to those currently sought in visual inspections. In addition, mechanical tests were performed on representative bridge structural components to attempt, for the first time to the writers’ best knowledge, deformation measurements using an aerial vehicle; displacements and corresponding accuracies were quantified in static and flying conditions. Finally, an outdoor feasibility test with the UAV was accomplished on a pedestrian bridge to test the marker identification algorithm.
    • Download: (15.78Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Use of Unmanned Aerial Vehicle for Quantitative Infrastructure Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/76580
    Collections
    • Journal of Infrastructure Systems

    Show full item record

    contributor authorA. Ellenberg
    contributor authorL. Branco
    contributor authorA. Krick
    contributor authorI. Bartoli
    contributor authorA. Kontsos
    date accessioned2017-05-08T22:17:44Z
    date available2017-05-08T22:17:44Z
    date copyrightSeptember 2015
    date issued2015
    identifier other40134871.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/76580
    description abstractUnmanned aerial vehicles (UAVs) allow remote imaging which can be useful in infrastructure condition evaluation. Furthermore, emerging noncontact sensing techniques such as digital imaging correlation (DIC) and other photogrammetric and visual approaches, including simultaneous localization and mapping (SLAM), can compute three-dimensional (3D) coordinates and perform deformation measurements as in the case of DIC/photogrammetry. A quantitative assessment of ways remote sensing in conjunction with UAVs could be implemented in practical applications is critically needed to leverage such capabilities in structural health monitoring (SHM). A comparative investigation of the remote sensing capabilities of a commercially availabl’e UAV, as well as both an optical metrology system known by the acronym TRITOP and the X-Box Kinect, is presented in this paper. The evidence provided demonstrates that red-green-blue cameras on UAVs could detect, from varying distances, cracks of sizes comparable to those currently sought in visual inspections. In addition, mechanical tests were performed on representative bridge structural components to attempt, for the first time to the writers’ best knowledge, deformation measurements using an aerial vehicle; displacements and corresponding accuracies were quantified in static and flying conditions. Finally, an outdoor feasibility test with the UAV was accomplished on a pedestrian bridge to test the marker identification algorithm.
    publisherAmerican Society of Civil Engineers
    titleUse of Unmanned Aerial Vehicle for Quantitative Infrastructure Evaluation
    typeJournal Paper
    journal volume21
    journal issue3
    journal titleJournal of Infrastructure Systems
    identifier doi10.1061/(ASCE)IS.1943-555X.0000246
    treeJournal of Infrastructure Systems:;2015:;Volume ( 021 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian