YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Hillslope Erosion Module for the Digital Yellow-River Model

    Source: Journal of Hydrologic Engineering:;2015:;Volume ( 020 ):;issue: 006
    Author:
    Dawei Guo
    ,
    Bofu Yu
    ,
    Xudong Fu
    ,
    Tiejian Li
    DOI: 10.1061/(ASCE)HE.1943-5584.0001117
    Publisher: American Society of Civil Engineers
    Abstract: Severe soil erosion in the Loess Plateau region and associated large sediment discharge downstream in China have been of great concern for years. A physically based distributed model, the Digital Yellow River model (DYRIM), was developed in 2007 for land management at the basin scale in this region. In DYRIM, an explicit sediment yield equation was derived based on simple assumptions where sediment discharge would increase nonlinearly with the slope length, leading to unrealistic results as the spatial scale increases. The main aims of this study were to reformulate the module of DYRIM in comparison with other process-based erosion models; to develop a generic framework for erosion prediction and simulation of erosion and sediment delivery processes within storm events; to validate the new hillslope erosion module for improved performance across a range of spatial scales; and to evaluate parameter consistency among different runoff events. Observed flow and sediment discharge data for 16 runoff events and three runoff plots with different slope lengths (20, 40, and 60 m) for each runoff event from the Tuanshangou experimental site in the Loess Plateau region were used to calibrate the new module for a 20 m slope and the calibrated parameter values were then used to predict the sediment discharge for slope lengths of 40 and 60 m at the same site. For calibration, the Nash-Sutcliffe coefficient of efficiency (NSE) was 0.92 on average for the 20 m plot. For prediction, the average NSE values were 0.87 for 40 m plot and 0.90 for the 60 m plot. There is a marked improvement over the existing module, for prediction with the existing module, the average NSE values were only
    • Download: (1.538Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Hillslope Erosion Module for the Digital Yellow-River Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/76256
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorDawei Guo
    contributor authorBofu Yu
    contributor authorXudong Fu
    contributor authorTiejian Li
    date accessioned2017-05-08T22:17:12Z
    date available2017-05-08T22:17:12Z
    date copyrightJune 2015
    date issued2015
    identifier other40098510.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/76256
    description abstractSevere soil erosion in the Loess Plateau region and associated large sediment discharge downstream in China have been of great concern for years. A physically based distributed model, the Digital Yellow River model (DYRIM), was developed in 2007 for land management at the basin scale in this region. In DYRIM, an explicit sediment yield equation was derived based on simple assumptions where sediment discharge would increase nonlinearly with the slope length, leading to unrealistic results as the spatial scale increases. The main aims of this study were to reformulate the module of DYRIM in comparison with other process-based erosion models; to develop a generic framework for erosion prediction and simulation of erosion and sediment delivery processes within storm events; to validate the new hillslope erosion module for improved performance across a range of spatial scales; and to evaluate parameter consistency among different runoff events. Observed flow and sediment discharge data for 16 runoff events and three runoff plots with different slope lengths (20, 40, and 60 m) for each runoff event from the Tuanshangou experimental site in the Loess Plateau region were used to calibrate the new module for a 20 m slope and the calibrated parameter values were then used to predict the sediment discharge for slope lengths of 40 and 60 m at the same site. For calibration, the Nash-Sutcliffe coefficient of efficiency (NSE) was 0.92 on average for the 20 m plot. For prediction, the average NSE values were 0.87 for 40 m plot and 0.90 for the 60 m plot. There is a marked improvement over the existing module, for prediction with the existing module, the average NSE values were only
    publisherAmerican Society of Civil Engineers
    titleImproved Hillslope Erosion Module for the Digital Yellow-River Model
    typeJournal Paper
    journal volume20
    journal issue6
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001117
    treeJournal of Hydrologic Engineering:;2015:;Volume ( 020 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian