YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlocal Damage Theory

    Source: Journal of Engineering Mechanics:;1987:;Volume ( 113 ):;issue: 010
    Author:
    Gilles Pijaudier‐Cabot
    ,
    Zdeněk P. Bažant
    DOI: 10.1061/(ASCE)0733-9399(1987)113:10(1512)
    Publisher: American Society of Civil Engineers
    Abstract: In the usual local finite element analysis, strain softening causes spurious mesh sensitivity and incorrect convergence when the element is refined to vanishing size. In a previous continuum formulation, these incorrect features were overcome by the imbricate nonlocal continuum, which, however, introduced some unnecessary computational complications due to the fact that all response was treated as nonlocal. The key idea of the present nonlocal damage theory is to subject to nonlocal treatment only those variables that control strain softening, and to treat the elastic part of the strain as local. The continuum damage mechanics formulation, convenient for separating the nonlocal treatment of damage from the local treatment of elastic behavior, is adopted in the present work. The only required modification is to replace the usual local damage energy release rate with its spatial average over the representative volume of the material whose size is a characteristic of the material. Avoidance of spurious mesh sensitivity and proper convergence are demonstrated by numerical examples, including static strain softening in a bar, longitudinal wave propagation in strain‐softening material, and static layered finite element analysis of a beam. In the last case, the size of the representative volume serving in one dimension as the averaging length for damage must not be less than the beam depth, due to the hypothesis of plane cross sections. It is also shown that averaging of the fracturing strain leads to an equivalent formulation, which could be extended to anisotropic damage due to highly oriented cracking.
    • Download: (1.240Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlocal Damage Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/75653
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorGilles Pijaudier‐Cabot
    contributor authorZdeněk P. Bažant
    date accessioned2017-05-08T22:16:02Z
    date available2017-05-08T22:16:02Z
    date copyrightOctober 1987
    date issued1987
    identifier other%28asce%290733-9399%281987%29113%3A10%281512%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/75653
    description abstractIn the usual local finite element analysis, strain softening causes spurious mesh sensitivity and incorrect convergence when the element is refined to vanishing size. In a previous continuum formulation, these incorrect features were overcome by the imbricate nonlocal continuum, which, however, introduced some unnecessary computational complications due to the fact that all response was treated as nonlocal. The key idea of the present nonlocal damage theory is to subject to nonlocal treatment only those variables that control strain softening, and to treat the elastic part of the strain as local. The continuum damage mechanics formulation, convenient for separating the nonlocal treatment of damage from the local treatment of elastic behavior, is adopted in the present work. The only required modification is to replace the usual local damage energy release rate with its spatial average over the representative volume of the material whose size is a characteristic of the material. Avoidance of spurious mesh sensitivity and proper convergence are demonstrated by numerical examples, including static strain softening in a bar, longitudinal wave propagation in strain‐softening material, and static layered finite element analysis of a beam. In the last case, the size of the representative volume serving in one dimension as the averaging length for damage must not be less than the beam depth, due to the hypothesis of plane cross sections. It is also shown that averaging of the fracturing strain leads to an equivalent formulation, which could be extended to anisotropic damage due to highly oriented cracking.
    publisherAmerican Society of Civil Engineers
    titleNonlocal Damage Theory
    typeJournal Paper
    journal volume113
    journal issue10
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)0733-9399(1987)113:10(1512)
    treeJournal of Engineering Mechanics:;1987:;Volume ( 113 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian