YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Inversion Model of Water Distribution Systems for Nodal Demand Calibration

    Source: Journal of Water Resources Planning and Management:;2015:;Volume ( 141 ):;issue: 009
    Author:
    Du Kun
    ,
    Long Tian-Yu
    ,
    Wang Jun-Hui
    ,
    Guo Jin-Song
    DOI: 10.1061/(ASCE)WR.1943-5452.0000506
    Publisher: American Society of Civil Engineers
    Abstract: Nodal demand calibration of a water distribution system (WDS) is a process of adjusting the nodal demand in WDS models to make its predictions consisting with measurements, which is an inversion problem compared to the conventional forward computation. Most existing methods rely on performing forward computation repeatedly to calculate the sensitivity matrix or generate offspring for searching for optimal solutions. This paper develops an alternative framework, namely an inversion model, to directly calibrate the nodal demand. The model is constructed by separating the known and unknown variables in continuity and energy equations of WDS using the matrix decomposition method. Specifically, the measured and unmeasured nodal demand, nodal head, and pipe flow are taken as knows and unknowns, respectively. The nodal demands with similar user characteristics are grouped (i.e., aggregated) to make the model overdetermined, and the Gauss-Newton based iteration method is applied to solve the model. To evaluate the calibration results when observation errors are involved, the standard deviations of unknowns are calculated using first-order second-moment method for uncertainty quantification, and the results are verified by Monte Carlo simulation. A simple network is used to illustrate the model construction in detail, and two numerical case studies, including a real highly looped network, are applied to further validate its effectiveness and feasibility. Encouraging results obtained clearly demonstrate the proposed method has potential for practical application in real-time nodal demand calibration, state estimation, and uncertainty quantification of WDSs.
    • Download: (414.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Inversion Model of Water Distribution Systems for Nodal Demand Calibration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/75569
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorDu Kun
    contributor authorLong Tian-Yu
    contributor authorWang Jun-Hui
    contributor authorGuo Jin-Song
    date accessioned2017-05-08T22:15:54Z
    date available2017-05-08T22:15:54Z
    date copyrightSeptember 2015
    date issued2015
    identifier other40030449.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/75569
    description abstractNodal demand calibration of a water distribution system (WDS) is a process of adjusting the nodal demand in WDS models to make its predictions consisting with measurements, which is an inversion problem compared to the conventional forward computation. Most existing methods rely on performing forward computation repeatedly to calculate the sensitivity matrix or generate offspring for searching for optimal solutions. This paper develops an alternative framework, namely an inversion model, to directly calibrate the nodal demand. The model is constructed by separating the known and unknown variables in continuity and energy equations of WDS using the matrix decomposition method. Specifically, the measured and unmeasured nodal demand, nodal head, and pipe flow are taken as knows and unknowns, respectively. The nodal demands with similar user characteristics are grouped (i.e., aggregated) to make the model overdetermined, and the Gauss-Newton based iteration method is applied to solve the model. To evaluate the calibration results when observation errors are involved, the standard deviations of unknowns are calculated using first-order second-moment method for uncertainty quantification, and the results are verified by Monte Carlo simulation. A simple network is used to illustrate the model construction in detail, and two numerical case studies, including a real highly looped network, are applied to further validate its effectiveness and feasibility. Encouraging results obtained clearly demonstrate the proposed method has potential for practical application in real-time nodal demand calibration, state estimation, and uncertainty quantification of WDSs.
    publisherAmerican Society of Civil Engineers
    titleInversion Model of Water Distribution Systems for Nodal Demand Calibration
    typeJournal Paper
    journal volume141
    journal issue9
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0000506
    treeJournal of Water Resources Planning and Management:;2015:;Volume ( 141 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian