YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Evaluation of PV-Powered Pump and Treat Systems Using Typical Meteorological Year Three Data

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2014:;Volume ( 018 ):;issue: 002
    Author:
    Yovanna Cortes Di Lena
    ,
    Andrew Curtis Elmore
    DOI: 10.1061/(ASCE)HZ.2153-5515.0000216
    Publisher: American Society of Civil Engineers
    Abstract: Pump and treat (P&T) is a technology that has been extensively used to remove and/or contain contaminated groundwater. P&T systems conventionally operate continuously, which requires significant amounts of energy. The use of renewable energies to meet power demands of remedial systems may reduce a project’s carbon dioxide emissions. This paper analyzes the performance of a hypothetical photovoltaic (PV)–powered P&T system that operates both intermittently by assuming that the system does not include an energy storage component and continuously by assuming that the system includes a relatively small capacity energy storage component using widely available Typical Meteorological Year 3 (TMY3) data. The results are compared against a baseline case of continuous pumping at a constant rate using volume of groundwater removed and capture zone width. The comparison shows that the cost-benefit of increasing the capture zone widths and volume of extracted groundwater by increasing the rated flow rate is greater than by including a relatively small-capacity energy storage component. PV-powered P&T system performance, without or with limited relatively small-capacity energy storage, is conditioned to site-specific hydrologic and seasonal characteristics. The methodology presented in this paper can be used to assess and compare the performance of each alternative.
    • Download: (1.943Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Evaluation of PV-Powered Pump and Treat Systems Using Typical Meteorological Year Three Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/75391
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorYovanna Cortes Di Lena
    contributor authorAndrew Curtis Elmore
    date accessioned2017-05-08T22:15:35Z
    date available2017-05-08T22:15:35Z
    date copyrightApril 2014
    date issued2014
    identifier other40015426.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/75391
    description abstractPump and treat (P&T) is a technology that has been extensively used to remove and/or contain contaminated groundwater. P&T systems conventionally operate continuously, which requires significant amounts of energy. The use of renewable energies to meet power demands of remedial systems may reduce a project’s carbon dioxide emissions. This paper analyzes the performance of a hypothetical photovoltaic (PV)–powered P&T system that operates both intermittently by assuming that the system does not include an energy storage component and continuously by assuming that the system includes a relatively small capacity energy storage component using widely available Typical Meteorological Year 3 (TMY3) data. The results are compared against a baseline case of continuous pumping at a constant rate using volume of groundwater removed and capture zone width. The comparison shows that the cost-benefit of increasing the capture zone widths and volume of extracted groundwater by increasing the rated flow rate is greater than by including a relatively small-capacity energy storage component. PV-powered P&T system performance, without or with limited relatively small-capacity energy storage, is conditioned to site-specific hydrologic and seasonal characteristics. The methodology presented in this paper can be used to assess and compare the performance of each alternative.
    publisherAmerican Society of Civil Engineers
    titlePerformance Evaluation of PV-Powered Pump and Treat Systems Using Typical Meteorological Year Three Data
    typeJournal Paper
    journal volume18
    journal issue2
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/(ASCE)HZ.2153-5515.0000216
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2014:;Volume ( 018 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian