YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparing Flexible Pavement Performance Using Emerging Analysis Tools

    Source: Journal of Transportation Engineering, Part A: Systems:;2014:;Volume ( 140 ):;issue: 005
    Author:
    Leslie Myers McCarthy
    ,
    Maria Chiara Guercio
    ,
    Thomas Bennert
    ,
    Van DeJarnette
    DOI: 10.1061/(ASCE)TE.1943-5436.0000665
    Publisher: American Society of Civil Engineers
    Abstract: In recent years, a variety of tools have been developed to assist in the analysis of flexible pavement service life in the United States. Although the output from many of the approaches is similar, each tool varies in the amount of testing effort, materials, and equipment necessary to arrive at the resulting predictions. Building upon the findings from research conducted in the National Cooperative Highway Research Program (NCHRP) Project 9-22B, this study focused on comparing flexible pavement performance predictions using three emerging analysis tools. One of the pavement analysis software packages, which considered the standard of, predicts performance in terms of incremental distresses and damage accumulation during a pavement’s service life. The other two programs are performance-related specification (PRS) tools that predict pavement performance in terms of service life factors. Three different asphalt mixtures were evaluated including a conventional mixture and two unconventional mixtures modified with emerging material technologies. The conventional mixture was used in a full-depth reconstruction project that featured low-level truck traffic. The two unconventional mixtures were placed as overlays on two structures featuring heavy truck traffic and the same substructure. Results from all three programs indicated that rutting predictions were similar among different analysis tools. However, the fatigue cracking predictions showed the greatest differences due to how the different analysis tools model climatic conditions. A comparison of the different analysis tools also suggested that for the mixes evaluated, one of them could be used effectively with Level 2 hot mix asphalt (HMA) inputs, in lieu of requiring the more time-intensive Level 1 HMA inputs, to predict the service life of flexible pavements. By performing a parametric analysis, it was established that this tool was sensitive to traffic variations and changes in structural support in combination with higher traffic. Certain modifications to the volumetric properties of the HMA layers produced significantly different performance predictions using this particular tool. The results of this study showed that the three analysis tools are comparable and produce equivalent performance predictions. Thus, the decision of which analysis tool to use should be based on a transportation agency’s assessment of its testing capabilities, budget level, and project complexity. In addition, the approach developed in this study can be enhanced in the future to form the basis of a decision-making procedure to help direct the amount of effort and funding necessary in the pavement and mixture design phase.
    • Download: (224.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparing Flexible Pavement Performance Using Emerging Analysis Tools

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/74889
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorLeslie Myers McCarthy
    contributor authorMaria Chiara Guercio
    contributor authorThomas Bennert
    contributor authorVan DeJarnette
    date accessioned2017-05-08T22:14:33Z
    date available2017-05-08T22:14:33Z
    date copyrightMay 2014
    date issued2014
    identifier other39963567.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/74889
    description abstractIn recent years, a variety of tools have been developed to assist in the analysis of flexible pavement service life in the United States. Although the output from many of the approaches is similar, each tool varies in the amount of testing effort, materials, and equipment necessary to arrive at the resulting predictions. Building upon the findings from research conducted in the National Cooperative Highway Research Program (NCHRP) Project 9-22B, this study focused on comparing flexible pavement performance predictions using three emerging analysis tools. One of the pavement analysis software packages, which considered the standard of, predicts performance in terms of incremental distresses and damage accumulation during a pavement’s service life. The other two programs are performance-related specification (PRS) tools that predict pavement performance in terms of service life factors. Three different asphalt mixtures were evaluated including a conventional mixture and two unconventional mixtures modified with emerging material technologies. The conventional mixture was used in a full-depth reconstruction project that featured low-level truck traffic. The two unconventional mixtures were placed as overlays on two structures featuring heavy truck traffic and the same substructure. Results from all three programs indicated that rutting predictions were similar among different analysis tools. However, the fatigue cracking predictions showed the greatest differences due to how the different analysis tools model climatic conditions. A comparison of the different analysis tools also suggested that for the mixes evaluated, one of them could be used effectively with Level 2 hot mix asphalt (HMA) inputs, in lieu of requiring the more time-intensive Level 1 HMA inputs, to predict the service life of flexible pavements. By performing a parametric analysis, it was established that this tool was sensitive to traffic variations and changes in structural support in combination with higher traffic. Certain modifications to the volumetric properties of the HMA layers produced significantly different performance predictions using this particular tool. The results of this study showed that the three analysis tools are comparable and produce equivalent performance predictions. Thus, the decision of which analysis tool to use should be based on a transportation agency’s assessment of its testing capabilities, budget level, and project complexity. In addition, the approach developed in this study can be enhanced in the future to form the basis of a decision-making procedure to help direct the amount of effort and funding necessary in the pavement and mixture design phase.
    publisherAmerican Society of Civil Engineers
    titleComparing Flexible Pavement Performance Using Emerging Analysis Tools
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000665
    treeJournal of Transportation Engineering, Part A: Systems:;2014:;Volume ( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian