YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Constitutive Modeling of Anisotropic Sand Behavior in Monotonic and Cyclic Loading

    Source: Journal of Engineering Mechanics:;2015:;Volume ( 141 ):;issue: 008
    Author:
    Zhiwei Gao
    ,
    Jidong Zhao
    DOI: 10.1061/(ASCE)EM.1943-7889.0000907
    Publisher: American Society of Civil Engineers
    Abstract: An anisotropic plasticity model is proposed to describe the fabric effect on sand behavior under both monotonic and cyclic loading conditions within the framework of anisotropic critical state theory. The model employs a cone-shaped bounding surface in the deviatoric stress space and a yield cap perpendicular to the mean stress axis to describe sand behavior in constant mean stress shear and constant stress ratio compression, respectively. The model considers a fabric tensor characterizing the internal structure of sand associated with the void space system and its evolution with plastic deformation. The fabric evolution law is assumed to render the fabric tensor to become codirectional with the loading direction tensor and to reach a constant magnitude of unit at the critical state. In constant stress ratio compression, the final degree of anisotropy is proportional to a normalized stress ratio. An anisotropic variable defined by a joint invariant of the fabric tensor and loading direction tensor is employed to describe the fabric effect on sand behavior in constant mean stress monotonic and cyclic shear. A systematic calibrating procedure of the model parameters is presented. Satisfactory comparison is found between the model simulations and test results on Toyoura sand in both monotonic and cyclic loadings with a single set of parameters. The important role of fabric and fabric evolution in capturing the sand behavior is highlighted. Limitations and potential improvement of the model in describing cyclic mobility of very dense sand and sand behavior in nonproportional loading have been discussed.
    • Download: (2.161Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Constitutive Modeling of Anisotropic Sand Behavior in Monotonic and Cyclic Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/73235
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorZhiwei Gao
    contributor authorJidong Zhao
    date accessioned2017-05-08T22:11:46Z
    date available2017-05-08T22:11:46Z
    date copyrightAugust 2015
    date issued2015
    identifier other39325039.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/73235
    description abstractAn anisotropic plasticity model is proposed to describe the fabric effect on sand behavior under both monotonic and cyclic loading conditions within the framework of anisotropic critical state theory. The model employs a cone-shaped bounding surface in the deviatoric stress space and a yield cap perpendicular to the mean stress axis to describe sand behavior in constant mean stress shear and constant stress ratio compression, respectively. The model considers a fabric tensor characterizing the internal structure of sand associated with the void space system and its evolution with plastic deformation. The fabric evolution law is assumed to render the fabric tensor to become codirectional with the loading direction tensor and to reach a constant magnitude of unit at the critical state. In constant stress ratio compression, the final degree of anisotropy is proportional to a normalized stress ratio. An anisotropic variable defined by a joint invariant of the fabric tensor and loading direction tensor is employed to describe the fabric effect on sand behavior in constant mean stress monotonic and cyclic shear. A systematic calibrating procedure of the model parameters is presented. Satisfactory comparison is found between the model simulations and test results on Toyoura sand in both monotonic and cyclic loadings with a single set of parameters. The important role of fabric and fabric evolution in capturing the sand behavior is highlighted. Limitations and potential improvement of the model in describing cyclic mobility of very dense sand and sand behavior in nonproportional loading have been discussed.
    publisherAmerican Society of Civil Engineers
    titleConstitutive Modeling of Anisotropic Sand Behavior in Monotonic and Cyclic Loading
    typeJournal Paper
    journal volume141
    journal issue8
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000907
    treeJournal of Engineering Mechanics:;2015:;Volume ( 141 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian