YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Real-Time Forecast of Reservoir Inflow Hydrographs Incorporating Terrain and Monsoon Effects during Typhoon Invasion by Novel Intelligent Numerical-Statistic Impulse Techniques

    Source: Journal of Hydrologic Engineering:;2015:;Volume ( 020 ):;issue: 010
    Author:
    Nien-Sheng Hsu
    ,
    Chien-Lin Huang
    ,
    Chih-Chiang Wei
    DOI: 10.1061/(ASCE)HE.1943-5584.0001142
    Publisher: American Society of Civil Engineers
    Abstract: This study develops an original methodology for forecasting real-time reservoir inflow hydrographs during typhoons, taking advantage of meteoro-hydrological methods such as analysis of typhoon hydrographs, numerical typhoon track forecasts, statistic typhoon central impulse-based quantitative precipitation forecasts model based on a real-time revised approach (TCI-RTQPF), real-time recurrent learning neural network (RTRLNN), and adaptive network-based fuzzy inference system (ANFIS). To derive the inflow hydrograph induced by interaction between typhoon rain bands, terrain, and monsoons, the inventive novel ensemble numerical-statistic impulse techniques are employed. The inflow during peak flow, inflection, and direct runoff ending (DRE) periods (impulse signal) are used for the deriving process. The hydrograph analysis is used to examine the mechanism between typhoon center location, wind field, precipitation, and the inflow hydrograph, and to establish the evaluation methods. Additionally, a novel total inflow forecast model is developed using image hashing and ANFIS for selecting optimal derived hydrograph. The experiment is conducted in the Tseng-Wen Reservoir basin, Taiwan. Results demonstrate that the wind field–based and moving dynamics–based approach of typhoon can effectively evaluate the time of peak flow, inflection point, and DRE incorporating terrain and monsoon effects. The effective functions for deriving impulse signal include blended polynomial, exponential, and power functions, and for deriving inflow hydrograph, multinomial Gaussian functions. Finally, the real-time experimental outcomes show that the proposed innovative practical methodology can accurately forecast the real-time reservoir inflow hydrograph that the average error of Typhoon Krosa is 7.81% within 32 h average forecasted lead time, and Typhoon Morakot, 9.78% within 79 h forecasted lead time.
    • Download: (21.89Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Real-Time Forecast of Reservoir Inflow Hydrographs Incorporating Terrain and Monsoon Effects during Typhoon Invasion by Novel Intelligent Numerical-Statistic Impulse Techniques

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/73059
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorNien-Sheng Hsu
    contributor authorChien-Lin Huang
    contributor authorChih-Chiang Wei
    date accessioned2017-05-08T22:11:10Z
    date available2017-05-08T22:11:10Z
    date copyrightOctober 2015
    date issued2015
    identifier other37700739.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/73059
    description abstractThis study develops an original methodology for forecasting real-time reservoir inflow hydrographs during typhoons, taking advantage of meteoro-hydrological methods such as analysis of typhoon hydrographs, numerical typhoon track forecasts, statistic typhoon central impulse-based quantitative precipitation forecasts model based on a real-time revised approach (TCI-RTQPF), real-time recurrent learning neural network (RTRLNN), and adaptive network-based fuzzy inference system (ANFIS). To derive the inflow hydrograph induced by interaction between typhoon rain bands, terrain, and monsoons, the inventive novel ensemble numerical-statistic impulse techniques are employed. The inflow during peak flow, inflection, and direct runoff ending (DRE) periods (impulse signal) are used for the deriving process. The hydrograph analysis is used to examine the mechanism between typhoon center location, wind field, precipitation, and the inflow hydrograph, and to establish the evaluation methods. Additionally, a novel total inflow forecast model is developed using image hashing and ANFIS for selecting optimal derived hydrograph. The experiment is conducted in the Tseng-Wen Reservoir basin, Taiwan. Results demonstrate that the wind field–based and moving dynamics–based approach of typhoon can effectively evaluate the time of peak flow, inflection point, and DRE incorporating terrain and monsoon effects. The effective functions for deriving impulse signal include blended polynomial, exponential, and power functions, and for deriving inflow hydrograph, multinomial Gaussian functions. Finally, the real-time experimental outcomes show that the proposed innovative practical methodology can accurately forecast the real-time reservoir inflow hydrograph that the average error of Typhoon Krosa is 7.81% within 32 h average forecasted lead time, and Typhoon Morakot, 9.78% within 79 h forecasted lead time.
    publisherAmerican Society of Civil Engineers
    titleReal-Time Forecast of Reservoir Inflow Hydrographs Incorporating Terrain and Monsoon Effects during Typhoon Invasion by Novel Intelligent Numerical-Statistic Impulse Techniques
    typeJournal Paper
    journal volume20
    journal issue10
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001142
    treeJournal of Hydrologic Engineering:;2015:;Volume ( 020 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian