YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Equivalent-Design Crack Model for Structural Glass Elements

    Source: Journal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 006
    Author:
    Manuel Santarsiero
    ,
    Maurizio Froli
    ,
    Christian Louter
    DOI: 10.1061/(ASCE)ST.1943-541X.0001026
    Publisher: American Society of Civil Engineers
    Abstract: Analytical determination of safety in glass structures often uses oversimplified resistance criteria or fully probabilistic models which require special software to numerically solve the complex equations. Due to computation cost and remaining uncertainty in these different analytical methods, engineers are often required to perform expensive experimental tests to reliably determine glass-structure safety. As a compromise between the need to accurately model the complex mechanical behavior of glass failure and the need to reduce analytical complexity in calculations, this paper proposes a simple semiprobabilistic failure prediction model for glass structures, called the equivalent-design crack model (EDCM). The EDCM is defined using the basis of linear elastic-fracture mechanics, characterized by a mathematical expression that depends on the probability of failure and the level of surface damage. The proposed model considers the influence of surface area, load time-history and complex stress fields within the structural elements. Experimental results from four-point bending and coaxial double-ring tests show good agreement with analytical results using the proposed EDCM method. Application ofthe EDCM in structural design is also presented.
    • Download: (3.158Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Equivalent-Design Crack Model for Structural Glass Elements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/72922
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorManuel Santarsiero
    contributor authorMaurizio Froli
    contributor authorChristian Louter
    date accessioned2017-05-08T22:10:48Z
    date available2017-05-08T22:10:48Z
    date copyrightJune 2014
    date issued2014
    identifier other37295622.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/72922
    description abstractAnalytical determination of safety in glass structures often uses oversimplified resistance criteria or fully probabilistic models which require special software to numerically solve the complex equations. Due to computation cost and remaining uncertainty in these different analytical methods, engineers are often required to perform expensive experimental tests to reliably determine glass-structure safety. As a compromise between the need to accurately model the complex mechanical behavior of glass failure and the need to reduce analytical complexity in calculations, this paper proposes a simple semiprobabilistic failure prediction model for glass structures, called the equivalent-design crack model (EDCM). The EDCM is defined using the basis of linear elastic-fracture mechanics, characterized by a mathematical expression that depends on the probability of failure and the level of surface damage. The proposed model considers the influence of surface area, load time-history and complex stress fields within the structural elements. Experimental results from four-point bending and coaxial double-ring tests show good agreement with analytical results using the proposed EDCM method. Application ofthe EDCM in structural design is also presented.
    publisherAmerican Society of Civil Engineers
    titleEquivalent-Design Crack Model for Structural Glass Elements
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001026
    treeJournal of Structural Engineering:;2014:;Volume ( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian